

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 4: Drawing

 Contents

 4.1 Introduction to PDF Drawing

 4.2 AspPDF.NET's Implementation of Drawing

 4.3 Filling Rules

 4.4 Managing Graphics State

 4.5 Advanced Graphics State Issues

 4.6 Code Sample: Torus 3D

 4.1 Introduction to PDF Drawing

 Any page of a PDF document contains a set of graphics operators that define
 the appearance of this page on computer screen, printer or any
 other device. Some operators define the current graphics state
 which includes the current color, current line width, etc.
 Others define lines, shapes, curves and regions of various sorts
 by their coordinates. Still others display sequences of text characters,
 etc.

 By default, all drawing on a page occurs in the default user coordinate space
 with the origin in the lower-left corner of the page. The positive x
 axis extends horizontally to the right, and the positive y axis vertically
 upwards, as in standard mathematical practice. The length of a unit along
 both x and y axes is 1/72 inch.

 The central notion in PDF drawing is a path, which is a composition of
 straight and curved line segments which may connect to one another or may be
 disconnected.

 A straight line is defined by two points - the current point and endpoint.
 A curved path segment is specified as a Cubic Bezier Curve. Such curves
 are defined by four points: the two endpoints (the current point P0
 and the final point P3) and two control points P1 and
 P2. The curve does not, in general, pass through the control points:

 A path is made up of one or more disconnected subpaths, each comprising a sequence
 of connected segments.
 Typically, a subpath is defined by specifying its starting point,
 appending one or more segments to it, and then closing it
 by appending a straight line segment from the current point to the starting point of the subpath.

 Once a path is defined, it is painted by stroking, filling, or both.

 4.2 AspPDF.NET's Implementation of Drawing

 AspPDF.NET implements drawing functionality via the PdfCanvas object.
 At least one instance of PdfCanvas is associated with every page and
 graphics object. To draw on the foreground of a page, the PdfPage.Canvas property
 is used. To draw on the background, PdfPage.Background is used. Both
 properties return separate instances of the PdfCanvas object.

 The following code segment draws a 5-point star by defining
 a path made up of a single subpath and stroking it:

 objPage.Canvas.MoveTo(100, 60);

 objPage.Canvas.LineTo(306, 600);

 objPage.Canvas.LineTo(512, 60);

 objPage.Canvas.LineTo(20, 400);

 objPage.Canvas.LineTo(592, 400);

 objPage.Canvas.ClosePath();

 objPage.Canvas.Stroke();

 A path is started by calling the MoveTo method. A call to LineTo adds
 a straight line segment to the path. Finally, the path is closed
 and stroked.

 The following code segment draws a propeller-like figure by
 defining and filling a path made up of two subpaths:

 objPage.Canvas.MoveTo(306, 196);

 objPage.Canvas.AddCurve(446, 296, 166, 496, 306, 596);

 objPage.Canvas.ClosePath();

 objPage.Canvas.MoveTo(106, 396);

 objPage.Canvas.AddCurve(206, 256, 406, 536, 506, 396);

 objPage.Canvas.ClosePath();

 objPage.Canvas.Fill();

 In addition to Stroke and Fill methods,
 PdfCanvas also offers the FillStroke method which first fills
 a path and then strokes it.

 4.3 Filling Rules

 The Fill method used in the previous section paints
 the insides of all the subpaths of a current path, considered together.
 Any subpaths that are open are implicitly closed before being filled.

 For a simple path, it is intuitively clear what region lies inside. However, for a
 more complex path -- for example, a path that intersects itself or has one subpath
 that encloses another -- the interpretation of "inside" is not always obvious. The
 path machinery uses one of two rules for determining which points lie inside a
 path: the nonzero winding number rule and the even-odd rule.

 4.3.1 Nonzero Winding Number Rule

 The nonzero winding number rule determines whether a given point is inside a
 path by conceptually drawing a ray from that point to infinity in any direction
 and then examining the places where a segment of the path crosses the ray. Starting
 with a count of 0, the rule adds 1 each time a path segment crosses the ray
 from left to right and subtracts 1 each time a segment crosses from right to left.
 After counting all the crossings, if the result is 0 then the point is outside the path;
 otherwise it is inside.

 For simple convex paths, the nonzero winding number rule defines the inside
 and outside as one would intuitively expect. The more interesting cases are those
 involving complex or self-intersecting paths.
 For a path consisting of a five-pointed star, drawn with five connected straight
 line segments intersecting each other, the rule considers the inside to be the entire
 area enclosed by the star, including the pentagon in the center. For a path composed
 of two concentric circles, the areas enclosed by both circles are considered
 to be inside, provided that both are drawn in the same direction. If the circles are
 drawn in opposite directions, only the "doughnut" shape between them is inside,
 according to the rule; the "doughnut hole" is outside:

 4.3.2 Even-Odd Rule

 An alternative to the nonzero winding number rule is the even-odd rule. This rule
 determines the "insideness" of a point by drawing a ray from that point in any
 direction and simply counting the number of path segments that cross the ray,
 regardless of direction. If this number is odd, the point is inside; if even, the point
 is outside. This yields the same results as the nonzero winding number rule for
 paths with simple shapes, but produces different results for more complex
 shapes.

 To fill a path using the Even-Odd rule, the Fill and FillStroke methods
 must be called with a True argument, as follows:

 objPage.Canvas.Fill(true);

 objPage.Canvas.FillStroke(true);

 4.4 Managing Graphics State

 The PdfCanvas object provides properties and methods
 to define the current graphics state which
 holds all major drawing parameters, such as the current
 stoking and filling colors, color space, line width, line join style, and others.
 Many graphics state parameters can be specified via their respective
 designated properties and methods, such as LineWidth,
 as well as the universal SetParams method.

 4.4.1 Colors

 The current stroking and filling colors are set via the SetColor
 and SetFillColor methods, respectively. Both methods accept
 three RGB color components in the range of 0.0 to 1.0. For example,
 the code

 objPage.Canvas.SetColor(0, 0, 1);

 objPage.Canvas.SetFillColor(1, 0, 0);

 sets the current stroking color to blue and filling color to red. Alternatively, the current colors
 can be specified via a parameter string passed to
 the SetParams method, for example:

 objPage.Canvas.SetParams("color=blue; fillcolor=red");

 Both the stroking and filling colors are black by default.

 In addition to setting the stroking and filling colors, the SetColor and SetFillColor methods also set the current color space
 to RGB. To switch to the CMYK color space and set CMYK colors for the stroking and filling operations,
 the methods	SetColorCMYK and SetFillColorCMYK methods should be used, respectively.
 These methods expect 4 arguments: cyan, magenta, yellow and black components.

 As of Version 2.5, AspPDF supports many additional color spaces besides RGB and CMYK. Advanced
 color spaces are described in Chapter 15 - Color Spaces.

 4.4.2 Line Width and Cap Style

 The current line width is set via the LineWidth property which is set
 to 1 by default. A line width can be a fractional number. Alternatively,
 the line width can be specified via the SetParams method, as follows:

 objPage.Canvas.SetParams("LineWidth=0.1");

 The Line Cap style specifies the shape to be used at the ends of open subpaths
 (and dashes, if any) when they are stoked. The Line Cap parameter
 can be set to one of three values:

 Style 0: Butt cap. The stroke is squared off at the endpoint of the path. There is no
 projection beyond the end of the path. This is the default value.

 Style 1: Round cap. A semicircular arc with a diameter equal to the line width is
 drawn around the endpoint and filled in.

 Style 2: Projecting square cap. The stroke continues beyond the endpoint of the path
 for a distance equal to half the line width and is then squared off.

 The current Line Cap parameter is specified via the LineCap property, or
 via the SetParams method as follows:

 objPage.Canvas.SetParams("LineCap=1");

 4.4.3 Line Join Style and Miter Limit

 The Line Join style specifies the shape to be used at the corners of paths that are
 stroked. The Line Join parameter can be set to one of three values:

 Style 0: Miter join. The outer edges of the strokes for the two segments are extended
 until they meet at an angle. If the segments meet at
 too sharp an angle (as defined by the miter limit parameter described below),
 a bevel join is used instead. This is the default style.

 Style 1: Round join. A circle with a diameter equal to the line width is drawn around
 the point where the two segments meet and is filled in, producing a rounded
 corner.

 Style 2: Bevel join. The two segments are finished with butt caps
 and the resulting notch beyond the ends of the segments is filled with a triangle.

 When two line segments meet at a sharp angle and mitered joins have been specified
 as the line join style, it is possible for the miter to extend far beyond the
 thickness of the line stroking the path. The miter limit imposes a maximum on
 the ratio of the miter length to the line width. When the limit is
 exceeded, the join is converted from a miter to a bevel.
 The ratio of miter length to line width is directly related to the angle alpha
 between	the segments in user space by the formula

 miterLength / lineWidth = 1 / sin(alpha / 2)

 The Line Join style and Miter Limit parameters can be specified via the
 LineJoin and MiterLimit properties, respectively,
 as well as the SetParams method,
 as follows:

 objPage.Canvas.SetParams("LineJoin=0; MiterLimit=1.414");

 4.4.4 Line Dash Pattern

 The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
 It is specified by a dash array and a dash phase. The dash array’s elements are
 numbers that specify the lengths of alternating dashes and gaps; the dash phase
 specifies the distance into the dash pattern at which to start the dash.
 By default, the dash value array is empty and dash phase is 0,
 which corresponds to a solid, unbroken line.

 Dash array values and dash phase can only be specified via the SetParams
 method. The following five calls to the SetParams method
 produce patterns displayed below:

 objPage.Canvas.SetParams("Dash1=3; DashPhase=0");

 objPage.Canvas.SetParams("Dash1=2; DashPhase=1");

 objPage.Canvas.SetParams("Dash1=2; Dash2=1; DashPhase=0");

 objPage.Canvas.SetParams("Dash1=3; Dash2=5; DashPhase=6");

 objPage.Canvas.SetParams("Dash1=2; Dash2=3; DashPhase=11");

 Starting with version 1.6.0.11, a line can be made solid via the syntax

 objPage.Canvas.SetParams("Dash1=0");

 4.5 Advanced Graphics State Issues

 4.5.1 Transformation Martix

 A transformation matrix specifies the relationship between two coordinate spaces.
 By modifying a transformation matrix, objects can be scaled, rotated, translated,
 or transformed in other ways.

 A transformation matrix in PDF is specified by an array of six numbers,
 [a b c d e f]. It can represent any linear transformation from one coordinate
 system to another. The most common types of transformation
 are translation, scaling, rotation and skew.

 Translations are specified as [1 0 0 1 tx ty], where tx and ty are the distances
 to translate the origin of the coordinate system in the horizontal and vertical
 dimensions, respectively.

 Scaling is obtained by [sx 0 0 sy 0 0]. This scales the coordinates so that 1
 unit in the horizontal and vertical dimensions of the new coordinate system is
 the same size as sx and sy units, respectively, in the previous coordinate system.

 Rotations are produced by [cos(alpha) sin(alpha) -sin(alpha) cos(alpha) 0 0], which has the effect
 of rotating the coordinate system axes by an angle alpha counterclockwise.

 Skew is specified by [1 tan(alpha) tan(beta) 1 0 0], which skews the x axis by an angle
 alpha and the y axis by an angle beta.

 To specify a transformation matrix, the PdfCanvas objects the method SetCTM which takes 6 numbers, a, b, c, d, e, and f,
 as arguments. By default, the current transformation matrix (CTM) is [1 0 0 1 0 0]
 which corresponds to identity transformation.
 Each call to SetCTM changes the CTM to the result of the multiplication
 of the current matrix with the new one.

 4.5.2 Graphics State Stack

 A well-structured PDF document typically contains many graphical elements
 that are essentially independent of each other and sometimes nested to multiple
 levels. The graphics state stack allows these elements to make local changes to the
 graphics state without disturbing the graphics state of the surrounding environment.

 The SaveState method pushes a copy of the entire graphics state onto the stack.
 The RestoreState method restores the entire graphics state to its former value by popping
 it from the stack. For example:

 objPage.Canvas.SaveState();

 objPage.Canvas.SetColor(1, 0.5, 0);

 objPage.Canvas.SetCTM(1, 0, 0, 1, 10, 15);

 ...

 objPage.Canvas.RestoreState();

 4.5.3 Clipping Paths

 The graphics state contains a current clipping path
 that limits the regions of the page affected by painting operators. The initial
 clipping path includes the entire page.

 A clipping path is created the same way as a regular path, but at the end
 instead	of calling Fill, Stroke or FillStroke, you must call the
 Clip method (and optionally pass True if you want the path
 to be computed according to the Odd-Even rule, see Section 4.3 above).
 For example:

 objPage.Canvas.SaveState();

 objPage.Canvas.MoveTo(10, 10);

 objPage.Canvas.LineTo(500, 10);

 objPage.Canvas.LineTo(500, 500);

 objPage.Canvas.Clip();

 ...

 <only the triangular area defined above will be affected>

 ...

 objPage.Canvas.RestoreState();

 4.6 Code Sample: Torus 3D

 The following code sample uses basic graphics methods
 provided by the PdfCanvas object, such as SetParams and FillStroke,
 to create a 3D image of a torus.

 The torus's surface is tiled with filled and stroked quadralaterals.

 Several 3D graphics techniques are being employed
 by this code sample to build a projection of the torus at an angle, achieve
 a perspective effect and remove invisible surfaces.

 Click on the links below to run this code sample:

 http://localhost/asppdf.net/manual_04/04_torus.cs.aspx
 http://localhost/asppdf.net/manual_04/04_torus.vb.aspx

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

