

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 9: Working with Existing PDFs

 Contents

 9.1 OpenDocument Method

 9.2 Template Fill-in

 9.3 Page Management

 9.4 Content Extraction

 9.5 Page Extraction

 9.6 Drawing Other Documents' Pages

 9.1 OpenDocument Method

 So far, we have only worked with new PDF documents
 created via PdfManager's CreateDocument method. AspPDF.NET
 works equally well with existing PDFs.

 To obtain an instance of the PdfDocument object representing an existing PDF document,
 the PdfManager object provides the OpenDocument method
 which expects two arguments: a physical path to the PDF document, and an optional
 password (in case the documented being opened is password-protected).
 Another overloaded version of OpenDocument expects a byte array as the first argument
 to open a PDF document from memory as opposed to disk.

 OpenDocument returns null if the PDF document
 being opened requires a password and the password argument is empty.
 If the specified password is valid, or if the document does not require a password at all,
 the method returns an instance of the PdfDocument object.
 In all other cases (invalid password, invalid path, corrupt
 PDF document, etc.) the method throws an error exception.

 The following code fragment opens a PDF document from the file mydoc.pdf:

 PdfManager objPDF = new PdfManager();

 PdfDocument objDoc = objPDF.OpenDocument(@"c:\path\mydoc.pdf");

 if(objDoc == null)

 {

 Response.Write("This PDF is password-protected, provide a password via 2nd argument.");

 }

 Dim objPDF As PdfManager= New PdfManager()

 Dim objDoc As PdfDocument objDoc = objPDF.OpenDocument("c:\path\mydoc.pdf")

 If objDoc Is Nothing Then

 Response.Write("This PDF is password-protected, provide a password via 2nd argument.")

 End If

 The OpenDocument(byte[]) method is identical to OpenDocument(string) except that
 it opens a document from a binary memory array instead of disk.
 This method is useful when a PDF document to be opened resides in a database
 table as a BLOB. An ADO recordset field of the datatype Binary (SQL Server) or
 OLE Object (Access) can be passed as the first argument
 to OpenDocument, as follows:

 PdfDocument objDoc = objPDF.OpenDocument(rs["blob"]);

 9.2 Template Fill-in

 Once a PdfDocument object representing
 an existing PDF is obtained via OpenDocument,
 it can be used the same way as a
 new documents. Its various properties can be read and modified,
 pages drawn on, added or removed, etc.

 NOTE: The Encrypt method cannot be called on an existing PDF document.
 To apply security to an insecure document, you
 must use the document stitching feature described in Section 14.1 - Document Stitching.

 Existing PDFs can be drawn on the same way as new
 documents. This enables your application to
 populate a document template
 with dynamic data (such text, images, drawings, etc.)
 For example, a standard blank PDF form can be opened
 and filled out with database- or user-supplied information.

 int [] arrX = {100, 325, 455, 512, 550, 100, 100};

 int [] arrY = {660, 660, 660, 687, 687, 602, 577};

 String [] arrText = {"John A.", "Smith", "123-56-7890", "1,234",

 "00", "4300 Cherry Ln.", "New York, NY 10001"};

 PdfManager objPdf = new PdfManager();

 // Create empty document

 PdfDocument objDoc = objPdf.OpenDocument(Server.MapPath("1040es.pdf"));

 // Select one of the standard PDF fonts

 PdfFont objFont = objDoc.Fonts["Helvetica-Bold"];

 // Obtain the only page's canvas

 PdfCanvas objCanvas = objDoc.Pages[1].Canvas;

 // Create empty param object

 PdfParam objParam = objPdf.CreateParam();

 // Fill out three copies of the 1040ES coupon

 for(int i = 0; i < 3; i++)

 {

 // Go over all items in arrays

 for(int j = 0; j < arrX.Length; j++)

 {

 objParam["x"] = arrX[j];

 objParam["y"] = arrY[j] - 263 * i;

 // Draw text on canvas

 objCanvas.DrawText(arrText[j], objParam, objFont);

 }

 }

 Dim arrX() As Integer = {100, 325, 455, 512, 550, 100, 100}

 Dim arrY() As Integer = {660, 660, 660, 687, 687, 602, 577}

 Dim arrText() As String = {"John A.", "Smith", "123-56-7890", "1,234", _

 "00", "4300 Cherry Ln.", "New York, NY 10001"}

 Dim objPdf As PdfManager = New PdfManager()

 ' Create empty document

 Dim objDoc As PdfDocument = objPdf.OpenDocument(Server.MapPath("1040es.pdf"))

 ' Select one of the standard PDF fonts

 Dim objFont As PdfFont = objDoc.Fonts("Helvetica-Bold")

 ' Obtain the only page's canvas

 Dim objCanvas As PdfCanvas = objDoc.Pages(1).Canvas

 ' Create empty param object

 Dim objParam As PdfParam = objPdf.CreateParam()

 ' Fill out three copies of the 1040ES coupon

 For i As Integer = 0 To 2

 ' Go over all items in arrays

 For j As Integer = 0 To arrX.Length - 1

 objParam("x") = arrX(j)

 objParam("y") = arrY(j) - 263 * i

 ' Draw text on canvas

 objCanvas.DrawText(arrText(j), objParam, objFont)

 Next

 Next

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("form.pdf"), False)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_09/09_form.cs.aspx
 http://localhost/asppdf.net/manual_09/09_form.vb.aspx

 9.3 Page Management

 AspPDF.NET makes it possible to insert pages into existing PDF documents, and
 also remove pages from them.

 9.3.1 Page Insertion

 Pages are added to a documents via the PdfDocument.Pages collection.
 The Add method of this collection accepts three optional arguments:
 the page width, height, and a 1-based insert-before index.
 By default, a page is appended to the end of the document. If the
 insert-before argument is specified, the new page is inserted right before the
 one pointed to by this argument. Once a new page is inserted,
 it is assigned the insert-before index, and all the following
 pages' indices are incremented by one.

 9.3.2 Page Removal

 Any page can be removed from the document via the PdfPages.Remove
 method. This method accepts a single argument, the 1-based index of a page
 to be removed.

 When the Remove method is called, AspPDF.NET does not really remove a page
 from the document, it just marks it as deleted, and removes a reference to it from
 the internal page tree. The page effectively disappears from the document,
 but the document file does not shrink. In fact, it even becomes
 slightly bigger	as new information has to be appended to the end of the document to indicate that one of its
 structures (a page) is now deleted.

 9.3.3 Drawing on Page Background

 The code sample 09_form.asp/aspx (see the previous
 section of this chapter) uses the PdfPage.Canvas property
 to draw text information on a form.
 In general, using PdfPage.Canvas on a page within an existing document
 causes new graphics and text to appear on top of the existing drawing
 on that page.

 If new graphics belongs underneath the existing drawing
 (such as, a watermark with a corporate logo), the property
 PdfPage.Background must be used instead.
 This property returns a separate instance of the PdfCanvas object,
 and whatever is drawn on it
 will appear on the bottom of the content stack.

 9.3.4 Code Sample

 The following code sample opens a simple two-page documents
 TwoPageDoc.pdf and performs the following operations with it:

 - a new page is inserted before the first page;

 - another page is inserted after what used to be the first page (and now second);

 - page 2 of the original document (which is now page 4) is removed;

 - a background image is drawn on all three remaining pages.

 PdfManager objPdf = new PdfManager();

 // Open blank PDF form from file

 PdfDocument objDoc = objPdf.OpenDocument(Server.MapPath("TwoPageDoc.pdf"));

 // insert page before 1st

 PdfPage objPage1 = objDoc.Pages.Add(1);

 // insert page after 2nd

 PdfPage objPage2 = objDoc.Pages.Add(3);

 // Remove page 4 (page 2 in original doc)

 objDoc.Pages.Remove(4);

 // Draw background image on all 3 remaining pages

 PdfImage objImage = objDoc.OpenImage(Server.MapPath("exclam.gif"));

 foreach(PdfPage objPage in objDoc.Pages)

 {

 objPage.Background.DrawImage(objImage, "x=70, y=220; scalex=2; scaley=2");

 }

 // Save document, the Save method returns generated file name

 string strFilename = objDoc.Save(Server.MapPath("pages.pdf"), false);

 Dim objPdf As PdfManager = New PdfManager()

 ' Open blank PDF form from file

 Dim objDoc As PdfDocument = objPdf.OpenDocument(Server.MapPath("TwoPageDoc.pdf"))

 ' insert page before 1st

 Dim bjPage1 As PdfPage = objDoc.Pages.Add(1)

 ' insert page after 2nd

 Dim objPage2 As PdfPage = objDoc.Pages.Add(3)

 ' Remove page 4 (page 2 in original doc)

 objDoc.Pages.Remove(4)

 ' Draw background image on all 3 remaining pages

 Dim objImage As PdfImage = objDoc.OpenImage(Server.MapPath("exclam.gif"))

 For Each objPage As PdfPage in objDoc.Pages

 objPage.Background.DrawImage(objImage, "x=70, y=220; scalex=2; scaley=2")

 Next

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("pages.pdf"), False)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_09/09_pages.cs.aspx
 http://localhost/asppdf.net/manual_09/09_pages.vb.aspx

 9.3.5 Coordinate Reset

 When drawing on an existing document, the text (graphics) sometimes appears inverted, shifted,
 scaled, or even does not appear on the page at all.

 As mentioned in Chapter 4, all drawing on a page occurs in the default user coordinate space
 with the origin in the lower-left corner of the page and the X and Y axes extending horizontally
 to the right and vertically upwards, respectively.
 Some PDF documents change this default coordinate space by shifting the origin,
 changing axis directions, modifying the unit length, etc. (see Section 4.5.1 - Transformation Martix).

 All drawing operations performed on such a document inherit the changed coordinate system,
 causing unpredictable results in terms of the location, orientation and size of objects being drawn.

 To handle documents like this, AspPDF.NET offers the method PdfPage.ResetCoordinates,
 which brings the coordinate system on the page back to the defaults.
 Just call this method before drawing text or graphics, as follows

 PdfDocument objDoc = objPDF.OpenDocument(@"c:\path\somedoc.pdf");

 PdfPage objPage = objDoc.Pages[1];

 objPage.ResetCoordinates();

 objPage.Canvas.DrawText("text", ...);

 9.4 Content Extraction

 AspPDF.NET is capable of extracting raw text information
 from PDF documents for searching and indexing purposes. Text is extracted
 from an individual page via the ExtractText method
 of the PdfPage object. ExtractText takes an optional
 parameter object or parameter string (described below.)
 This method always returns text strings
 in Unicode format.

 Text extraction with coordinates, introduced in Version 2.8, is described in Section 17.7 - Structured Text Extraction.

 9.4.1 Code Sample

 The following code sample extracts and prints out text data from
 all pages of a PDF (we use the 1-page file 1040es.pdf from section 9.2):

 PdfManager objPdf = new PdfManager();

 // Open a PDF file for text extraction

 PdfDocument objDoc = objPdf.OpenDocument(Server.MapPath("1040es.pdf"));

 string strText = "";

 foreach(PdfPage objPage in objDoc.Pages)

 {

 strText += objPage.ExtractText();

 }

 lblResult.Text = Server.HtmlEncode(strText);

 Dim objPdf As PdfManager = new PdfManager()

 ' Open a PDF file for text extraction

 Dim objDoc As PdfDocument = objPdf.OpenDocument(Server.MapPath("1040es.pdf"))

 Dim strText As String = ""

 For Each objPage As PdfPage in objDoc.Pages

 strText = strText + objPage.ExtractText()

 Next

 lblResult.Text = Server.HtmlEncode(strText)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_09/09_extract.cs.aspx
 http://localhost/asppdf.net/manual_09/09_extract.vb.aspx

 9.4.2 Possible Text Extraction Problems

 PDF text extraction is not always reliable, sometimes it produces split
 and conjoined words, or even unreadable gibberish.

 9.4.2.1 Split and Conjoined Words

 Unlike HTML or Word documents, PDFs do not usually contain
 blocks of meaningful, readable text. Instead, they contain
 text drawing operators that reference short phrases, individual
 words, word parts and even separate characters.
 As a result, an attempt to extract text information from a PDF document often
 yields split and conjoined words. For example, the phrase "Brown dog"
 may come out as "Browndog" (conjoined words) or "Bro wn d og"
 (split words).

 9.4.2.2 Gibberish

 Many PDF documents, especially those using non-Latin alphabets, do not
 use strings of readable characters to display text at all.
 Instead, they use "glyph codes" which are numbers identifying character
 appearances in a font file. "Good" PDF documents also provide mapping
 tables (referred to as ToUnicode maps) enabling a consumer application
 to convert those codes back to human-readable characters. However, not every
 PDF document is "good". Those that aren't cannot technically be read.
 An attempt to extract text from such a document yields gibberish.
 Copying information from such a file via clipboard from Acrobat Reader
 will fail as well.

 9.4.2.3 Unknown Encoding

 Certain foreign-language PDF documents use ASCII characters in the 129 - 255
 range to display text information. Copying and pasting from such documents
 with Acrobat Reader usually produces unreadable text. However, AspPDF.NET is
 capable of extracting text from these documents and converting them into
 Unicode, but a code page must be passed to
 ExtractText method via the CodePage parameter, such as "CodePage=1251" (Cyrillic),
 or "CodePage=1256" (Arabic), etc.

 9.4.3 Permission Issues

 A secure document may disallow content extraction by clearing Bit 5
 of its permission flags (see Section 8.1.2).
 To be in compliance with Adobe PDF licensing requirements, AspPDF.NET
 enforces this permission flag. For the content extraction functionality to work,
 a secure document with Bit 5 cleared
 must be opened with the owner
 password
 , or an error exception will be thrown.

 9.5 Page Extraction

 AspPDF.NET is capable of extracting individual pages
 from a PDF document via the ExtractPages method of the PdfDocument object.
 This method accepts a PdfParam object or parameter string as an argument,
 and returns a new instance of PdfDocument comprised of one or more pages extracted from the original document.
 The 1-based indices of pages to be extracted are specified via the parameters Page1,
 Page2, Page3, etc. This method can only be called on
 an existing, not new, PDF document.

 The following code fragment opens a document, extracts pages 5 and 3 from it,
 and saves the resultant 2-page document to disk. Pages 5 and 3 of the original document become
 pages 1 and 2 of the new document, respectively.

 ...

 Set Doc = Pdf.OpenDocument("c:\path\original.pdf")

 Set NewDoc = Doc.ExtractPages("Page1=5; Page2=3")

 NewDoc.Save "c:\path\extractedpages.pdf"

 The ExtractPages method looks for the parameters Page1, Page2, etc., until
 a break in the sequence is encountered.

 NOTE: The PdfDocument object returned by ExtractPages cannot be used to manipulate
 the newly extracted pages. In fact, this object cannot be used for anything other than saving
 (to disk, memory or an HTTP stream). If you do need to make changes to it, you must
 save it first and then re-open, as follows:

 ...

 PdfDocument objNewDoc = objDoc.ExtractPages("Page1=5; Page2=3");

 PdfDocument objDoc2 = objPDF.OpenDocument(objNewDoc.SaveToMemory);

 objDoc2.Pages[1].Canvas.DrawText(...);

 9.6 Drawing Other Documents' Pages

 As of Version 2.3, AspPDF.NET enables the page of another existing document to be turned into a PdfGraphics
 object and then drawn on this document at an arbitrary location or locations,
 with rotation and scaling applied, if necessary. PdfGraphics objects are described in detail
 in Chapter 5.

 To turn another document's page into an instance of the PdfGraphics object, use the method
 PdfDocument.CreateGraphicsFromPage. This method expects two arguments: the instance of another
 document and the 1-based index of the page within that document to be converted.
 If the document is encrypted, it needs to have been opened using the owner password.

 The method returns an instance of the PdfGraphics object which can then be drawn
 on any page of this document via the PdfCanvas.DrawGraphics method.

 PdfManager objPdf = new PdfManager();

 // Create a new document

 PdfDocument objDoc = objPdf.CreateDocument();

 PdfPage objPage = objDoc.Pages.Add();

 // Open existing PDF

 PdfDocument objAnotherDoc = objPdf.OpenDocument(Server.MapPath("1040es.pdf"));

 // Turn page 1 into a PdfGraphics object

 PdfGraphics objGraphics = objDoc.CreateGraphicsFromPage(objAnotherDoc, 1);

 // Draw on this document several times

 objPage.Canvas.DrawGraphics(objGraphics,

 "x=10; y=500; scalex=0.3; scaley=0.3");

 objPage.Canvas.DrawGraphics(objGraphics,

 "x=180; y=600; scalex=0.2; scaley=0.2; angle=-30");

 objPage.Canvas.DrawGraphics(objGraphics,

 "x=300; y=550; scalex=0.1; scaley=0.1; angle=-60");

 // Save document, the Save method returns generated file name

 String strFilename = objDoc.Save(Server.MapPath("page2graphics.pdf"), false);

 Dim objPdf As PdfManager = New PdfManager()

 ' Create a new document

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 Dim objPage As PdfPage = objDoc.Pages.Add()

 ' Open existing PDF

 Dim objAnotherDoc As PdfDocument=objPdf.OpenDocument(Server.MapPath("1040es.pdf"))

 ' Turn page 1 into a PdfGraphics object

 Dim objGraphics As PdfGraphics = objDoc.CreateGraphicsFromPage(objAnotherDoc, 1)

 ' Draw on this document several times

 objPage.Canvas.DrawGraphics(objGraphics, _

 "x=10; y=500; scalex=0.3; scaley=0.3")

 objPage.Canvas.DrawGraphics(objGraphics, _

 "x=180; y=600; scalex=0.2; scaley=0.2; angle=-30")

 objPage.Canvas.DrawGraphics(objGraphics, _

 "x=300; y=550; scalex=0.1; scaley=0.1; angle=-60")

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("page2graphics.pdf"),False)

 Click the links below to run this code sample:

 http://localhost/asppdf/manual_09/09_page2graphics.cs.aspx
 http://localhost/asppdf/manual_09/09_page2graphics.vb.aspx

 Using CreateGraphicsFromPage is the most efficient way to create a multi-page
 document based on a single-page PDF template.
 See Article PS130905190 of our Knowledge Base for a code sample.

 UPDATE: As of Version 3.2, one or more instances of the PdfGraphics object can be designated as templates
 for a PdfDocument object via the method PdfDocument.AddTemplate. This way, every time a new page is added to this document, all applicable template graphics
 are automatically drawn on this page and become this page's background.
 This functionality is described in detail in Section 15.8 - Templates.

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

