

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 18: IE-based HTML-to-PDF Conversion

 Contents

 18.1 OpenUrl Method: Overview

 18.2 Pagination

 18.3 Hyperlinks

 18.4 Miscellaneous Parameters

 18.5 IE Compatibility Mode

 18.1 OpenUrl Method: Overview

 18.1.1 OpenUrl vs. ImportFromUrl

 As of Version 2.9, AspPDF.NET expands its HTML-to-PDF functionality
 by adding a new method, OpenUrl, to the PdfDocument object. Like the ImportFromUrl method
 described in Chapter 13, OpenUrl helps convert an arbitrary URL, or an HTML string,
 to a PDF document, but it does so differently.

 While ImportFromUrl relies on our own in-house HTML-rendering engine, OpenUrl delegates the job to
 Microsoft Internet Explorer by connecting to the IE WebBrowser object residing in the MSHTML.dll library.
 Harnessing the robust IE engine helps achieve the perfect PDF snapshot of any HTML document, no matter how complex, whereas
 the ImportFromUrl method is only capable of rendering basic HTML.

 However, unlike ImportFromUrl, the OpenUrl method produces a rasterized image of the HTML document.
 This method's output is essentially a static bitmap convertible to PDF. The scalability and searchability of the original
 document is not preserved.

 18.1.2 OpenUrl Usage

 The PdfDocument.OpenUrl method expects four arguments: a URL or HTML string, a list of parameters, and a username and password.
 The first argument is required, the others are optional. The method returns an instance of the PdfImage
 object representing the image of the specified URL or HTML string. This image can then
 be drawn on a PDF page via the PdfCanvas.DrawImage method in an arbitrary position and at an arbitrary scale.
 By default, the entire web document is converted to a single image. Pagination is covered in the next section.

 The following code sample converts our corporate web site http://www.persits.com to a PDF:

 PdfManager objPdf = new PdfManager();

 // Create empty document

 PdfDocument objDoc = objPdf.CreateDocument();

 // Add a new page

 PdfPage objPage = objDoc.Pages.Add();

 // Convert www.persits.com to image

 PdfImage objImage = objDoc.OpenUrl("http://www.persits.com/old/index.html");

 // Shrink as needed to fit width

 float fScale = objPage.Width / objImage.Width;

 // Align image top with page top

 float fY = objPage.Height - objImage.Height * fScale;

 // Draw image

 PdfParam objParam = objPdf.CreateParam();

 objParam["x"] = 0;

 objParam["y"] = fY;

 objParam["ScaleX"] = fScale;

 objParam["ScaleY"] = fScale;

 objPage.Canvas.DrawImage(objImage, objParam);

 // Save document, the Save method returns generated file name

 string strFilename = objDoc.Save(Server.MapPath("iehtmltopdf.pdf"), false);

 lblResult.Text = "Success! Download your PDF file here";

 Dim objPdf As PdfManager = new PdfManager()

 ' Create empty document

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 ' Add a new page

 Dim objPage As PdfPage= objDoc.Pages.Add()

 ' Convert www.persits.com to image

 Dim objImage As PdfImage= objDoc.OpenUrl("http://www.persits.com/old/index.html")

 ' Shrink as needed to fit width

 Dim fScale As Single = objPage.Width / objImage.Width

 ' Align image top with page top

 Dim fY As Single = objPage.Height - objImage.Height * fScale

 ' Draw image

 Dim objParam As PdfParam = objPdf.CreateParam()

 objParam("x") = 0

 objParam("y") = fY

 objParam("ScaleX") = fScale

 objParam("ScaleY") = fScale

 objPage.Canvas.DrawImage(objImage, objParam)

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("iehtmltopdf.pdf"), False)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_18/18_simple.cs.aspx
 http://localhost/asppdf.net/manual_18/18_simple.vb.aspx

 18.1.3 Authentication

 If the URL being opened is protected with Basic authentication, the valid username and password must be passed to the OpenUrl method
 as the 3rd and 4th arguments, as follows:

 PdfImage objImage = objDoc.OpenUrl(url, "", "username", "password");

 Under .NET, the Username and Password arguments can instead be used to pass an authentication cookie
 in case both the script calling OpenUrl and the URL itself
 are protected by the same user account under .NET Forms authentication.
 To pass a cookie to OpenUrl, the cookie name prepended with the prefix "Cookie:" is passed
 via the Username argument, and the cookie value via the Password argument.
 The following example illustrates this technique.

 Suppose you need to implement a "Click here for a PDF version of this page" feature
 in a .NET-based web application. The application is protected with .NET Forms Authentication:

 <authentication mode="Forms">

 <forms name="MyAuthForm" loginUrl="login.aspx" protection="All">

 <credentials passwordFormat = "SHA1">

 <user name="JSmith" password="13A23E365BFDBA30F788956BC2B8083ADB746CA3"/>

 ... other users

 </credentials>

 </forms>

 </authentication>

 The page that needs to be converted to PDF, say report.aspx, contains the button
 "Download PDF version of this report" that invokes another script, say convert.aspx, which
 calls OpenUrl. Both scripts reside in the same directory under the same protection.

 If convert.aspx simply calls objDoc.OpenUrl("http://localhost/dir/report.aspx", ...),
 the page that ends up being converted will be login.aspx and not report.aspx, because
 AspPDF.NET itself has not been authenticated against the user database and naturally will be forwarded
 to the login screen.

 To solve this problem, we just need to pass the authentication cookie whose name is MyAuthForm
 (the same as the form name) to OpenUrl. The following code (placed in convert.aspx) demonstrates this technique:

 ...

 string strName = "Cookie:" + Request.Cookies["MyAuthForm"].Name;

 string strValue = Request.Cookies["MyAuthForm"].Value;

 // Convert URL to image

 PdfImage objImage = objDoc.OpenUrl("http://localhost/dir/report.aspx", "", strName, strValue);

 ...

 Dim strName As String = "Cookie:" + Request.Cookies("MyAuthForm").Name

 Dim strValue As String = Request.Cookies("MyAuthForm").Value

 ' Convert URL to image

 Dim objImage As PdfImage = objDoc.OpenUrl("http://localhost/dir/report.aspx", "", strName, strValue)

 18.1.4 Direct HTML Feed

 The first argument to the OpenUrl method can be used to directly pass an HTML string instead of a URL.
 The string must start with the characters "<HTML" or "<html"
 to signal that the value is to be treated as an HTML text and not a URL.
 The non-ASCII characters in the string must be in Unicode format, and not encoded in any way. For example:

 string strText = "<html><table border><tr><th>AA</th><th>BB</th></tr><tr><td>X</td><td>Y</td></tr></table></html>";

 strText = strText.Replace("AA", "Greek");

 strText = strText.Replace("BB", "Chinese");

 strText = strText.Replace('X', Convert.ToChar(0x03A9));

 strText = strText.Replace('Y', Convert.ToChar(0x56FD));

 Set Image = Doc.OpenUrl(strText)

 ...

 The script above produces the following output:

 Note that in the direct HTML feed mode, there is no "base" URL by default, so if your HTML string contains images and other objects
 pointed to via their relative paths, you must also provide the base URL information via the <base> tag, as follows:

 string strText = "<html><base href=\"c:\\images\\\">

 ...

 ...

 </html>";

 18.2 Pagination

 18.2.1 PageHeight & AspectRatio Parameters

 As mentioned above, the OpenUrl method returns the snapshot of the HTML document as a single continuous image by default.
 For long HTML documents spanning multiple pages, this default behavior may not be practical as multiple images representing the individual pages
 of the document are needed instead.

 The OpenUrl method is capable of splitting the HTML document's snapshot image into multiple pages. When used in the pagination mode,
 OpenUrl generates a linked list of images. The method returns an instance of the PdfImage object which represents
 the top page of the document. The subsequent images are obtained via the PdfImage.NextImage property.
 This property returns the next PdfImage object in the sequence
 or Nothing (null) if the current image is the last one in the linked list.

 The pixel height of each individual page image can either be specified directly, via the PageHeight parameter,
 or be computed based on the current document's page width and the desired aspect ratio specified via the AspectRatio parameter.
 For example, the line

 PdfImage objImage = objDoc.OpenUrl(url, "PageHeight=792");

 makes all page images (except possibly the last one) 792 pixels high.

 Since the width of the document image wholly depends on the underlying HTML code and is not always known in advance,
 it is often more practical to specify the page height indirectly, via an aspect ratio that matches the aspect ratio of the PDF page on which
 this image is ultimately to be drawn.
 For example, the line

 PdfImage objImage = objDoc.OpenUrl(url, "AspectRatio=0.7727");

 makes the aspect ratio of all the page images (except possibly the last one) the same as that of the standard US Letter page (which is 8.5"/11" = 0.7727.)
 The image height is computed automatically by dividing the document width, whatever it happens to be, by the specified aspect ratio value.
 When drawing the images on the PDF pages, a scaling factor has to be applied to make the image occupy the entire area of the page.
 The PageHeight and AspectRatio parameters are mutually exclusive. If both are specified, PageHeight is ignored.

 The following code sample converts the URL http://support.persits.com/default.asp?displayall=1 to a multi-page PDF
 with pagination based on the US Letter aspect ratio:

 PdfManager objPdf = new PdfManager();

 // Create empty document

 PdfDocument objDoc = objPdf.CreateDocument();

 PdfParam objParam = objPdf.CreateParam();

 // Convert URL to image

 PdfImage objImage = objDoc.OpenUrl("http://support.persits.com/default.asp?displayall=1",

 "AspectRatio=0.7727");

 // Iterate through all images

 while(objImage != null)

 {

 // Add a new page

 PdfPage objPage = objDoc.Pages.Add();

 // Compute scale based on image width and page width

 float fScale = objPage.Width / objImage.Width;

 // Draw image

 objParam["x"] = 0;

 objParam["y"] = objPage.Height - objImage.Height * fScale;

 objParam["ScaleX"] = fScale;

 objParam["ScaleY"] = fScale;

 objPage.Canvas.DrawImage(objImage, objParam);

 // Go to next image

 objImage = objImage.NextImage;

 }

 // Save document, the Save method returns generated file name

 string strFilename = objDoc.Save(Server.MapPath("pages.pdf"), false);

 Dim objPdf As PdfManager = new PdfManager()

 ' Create empty document

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 Dim objParam As PdfParam = objPdf.CreateParam()

 ' Convert URL to image

 Dim objImage As PdfImage = objDoc.OpenUrl("http://support.persits.com/default.asp?displayall=1", _

 "AspectRatio=0.7727")

 ' Iterate through all images

 While Not objImage Is Nothing

 ' Add a new page

 Dim objPage As PdfPage = objDoc.Pages.Add()

 ' Compute scale based on image width and page width

 Dim fScale As Single = objPage.Width / objImage.Width

 ' Draw image

 objParam("x") = 0

 objParam("y") = objPage.Height - objImage.Height * fScale

 objParam("ScaleX") = fScale

 objParam("ScaleY") = fScale

 objPage.Canvas.DrawImage(objImage, objParam)

 ' Go to next image

 objImage = objImage.NextImage

 End While

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("pages.pdf"), False)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_18/18_pages.cs.aspx
 http://localhost/asppdf.net/manual_18/18_pages.vb.aspx

 18.2.2 Hemming

 The code sample in the previous subsection produces a paginated PDF document in which the page delimiters often fall on critical content
 such as text or images, as shown below:

 For cleaner cutting, the OpenUrl method can be instructed to push the bottom edge of each page upwards until it meets a relatively blank row of pixels.
 For the lack of a better term, we dubbed this process "hemming", a word used by tailors. Hemming reduces the height of some or all page images somewhat.

 By default, OpenUrl performs no hemming. If the Hem parameter is specified and set to a non-zero value,
 OpenUrl scans the specified number of pixel rows of each page, starting with the bottom row, looking for a
 row with the fewest number of pixels deviating from the white background.
 Once this row is found, it is used as the new page delimiter row, and the next page begins with the row directly below it.
 If Hem is set to a negative number such as -1, the entire page image is scanned in search for a suitable row.
 The background color against which the pixels are compared is specified via the HemColor parameter and is usually white.
 If this parameter is omitted, the predominant color for each row is computed and used as the base color instead.

 The image below demonstrates the improvement in pagination if the code sample above is modified by adding the Hem and HemColor parameter,
 as follows:

 PdfImage objImage = objDoc.OpenUrl("http://support.persits.com/default.asp?displayall=1", "AspectRatio=0.7727; Hem=40; HemColor=white");

 18.2.3 Colored Page Breaks

 As of Version 3.0, the OpenUrl method is capable of splitting a document into pages along colored horizontal delimiters contained in the document.
 The parameter PageBreakColor specifies the color of the delimiter.
 For example, an HTML document may contain the following construct where the page break should be:

<div style="background-color: green; width: 100%; height: 1pt"></div>

 This construct appears in the document as a thin green horizontal line. Setting the PageBreakColor parameter to green, will cause
 OpenUrl to create a page break right before this green line, as follows:

 PdfImage objImage = objDoc.OpenUrl(strUrl, "AspectRatio=0.7727; PageBreakColor=green");

 When PageBreakColor is specified, OpenUrl scans each page image from the top down looking for a row of pixels of the specified color.
 The parameter PageBreakThreshold specifies what percentage of pixels in a row must be of the specified color
 for this row to be considered a page break line. By default, this value is 0.8 which defines the default threshold percentage to be 80%.

 18.3 Hyperlinks

 The OpenUrl method is capable of preserving the hyperlinks on the HTML document being converted.
 If the method is called with the parameter Hyperlinks set to True,
 every image object it generates is populated with the collection of PdfRect objects,
 each representing a hyperlink depicted on this image. It is your application's responsibility to draw those hyperlinks
 (in the form of link annotations connected to URL actions) on the PDF pages along with the images themselves.
 Annotations and actions are described in Chapter 10 - Interactive Features.

 As of Version 2.9, the PdfImage object is equipped with the Hyperlinks
 property which returns a collection of PdfRect objects.
 The PdfRect object encalsulates the standard properties of a rectange (Left, Bottom, Top, Right, Width, Height)
 and also a string property, Text. The properties (Left, Bottom) and (Width, Height)
 return the coordinates of the lower-left corner of the hyperlink
 relative to the lower-left corner of the image to which this hyperlink belongs, and the hyperlink's dimensions, respectively.
 The Text property returns the target URL of this hyperlink.

 Note that the coordinates of the hyperlinks are provided in the coordinate space of the image (with its origin in the lower-left corner, as in standard
 PDF practice.)
 When the image is drawn on a PDF page at a certain location (as specified by the X and Y
 parameters of the DrawImage method), the hyperlink annotations must be drawn with the same X and Y displacements.
 Also, if scaling is applied to the image via the ScaleX and ScaleY parameters of the DrawImage method,
 the same scaling must apply to the hyperlink coordinates and dimensions as well. Failure to adjust the hyperlink coordinates
 properly will result in a misalignment between the depiction of the hyperlink on the page and the actual clickable hyperlink area.

 The following code sample performs hemming (described in the previous section) as well as hyperlink rendering.
 Clickable hyperlinks on the PDF pages are created with the help of the PdfAnnot and PdfAction objects.

 Note that the same scaling is applied to both the image and the coordinates and dimensions of the link annotations.
 In addition to that, the Y-coordinate shift applied to the image is also applied to the annotations (the X-coordinate
 shift is 0 in our example.)

 ...

 objHyperlinkParam["x"] = objRect.Left * fScale;

 objHyperlinkParam["y"] = objRect.Bottom * fScale + objParam["y"];

 objHyperlinkParam["width"] = objRect.Width * fScale;

 objHyperlinkParam["height"] = objRect.Height * fScale;

 ...

 PdfManager objPdf = new PdfManager();

 // Create empty document

 PdfDocument objDoc = objPdf.CreateDocument();

 // Parameter object for image drawing

 PdfParam objParam = objPdf.CreateParam();

 // Parameter object for hyperlink annotation drawing

 PdfParam objHyperlinkParam = objPdf.CreateParam();

 objHyperlinkParam.Set("Type = link");

 // Convert URL to image. Enable hyperlinks. Use hemming.

 PdfImage objImage = objDoc.OpenUrl("http://support.persits.com/default.asp?displayall=1",

 "AspectRatio=0.7727; hyperlinks=true; hem=50; hemcolor=white");

 // Iterate through all images

 while(objImage != null)

 {

 // Add a new page

 PdfPage objPage = objDoc.Pages.Add();

 // Compute scale based on image width and page width

 float fScale = objPage.Width / objImage.Width;

 // Draw image

 objParam["x"] = 0;

 objParam["y"] = objPage.Height - objImage.Height * fScale;

 objParam["ScaleX"] = fScale;

 objParam["ScaleY"] = fScale;

 objPage.Canvas.DrawImage(objImage, objParam);

 // Now draw hyperlinks from the Image.Hyperlinks collection

 foreach(PdfRect objRect in objImage.Hyperlinks)

 {

 objHyperlinkParam["x"] = objRect.Left * fScale;

 // Y-coordinate must be lifted by the same amount as the image itself

 objHyperlinkParam["y"] = objRect.Bottom * fScale + objParam["y"];

 objHyperlinkParam["width"] = objRect.Width * fScale;

 objHyperlinkParam["height"] = objRect.Height * fScale;

 objHyperlinkParam["border"] = 0;

 // Create link annotation

 PdfAnnot objAnnot = objPage.Annots.Add("", objHyperlinkParam);

 objAnnot.SetAction(objDoc.CreateAction("type=URI", objRect.Text));

 }

 // Go to next image

 objImage = objImage.NextImage;

 }

 // Save document, the Save method returns generated file name
 string strFilename = objDoc.Save(Server.MapPath("hyperlinks.pdf"), false);

 Dim objPdf As PdfManager = New PdfManager()

 ' Create empty document

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 ' Parameter object for image drawing

 Dim objParam As PdfParam = objPdf.CreateParam()

 ' Parameter object for hyperlink annotation drawing

 Dim objHyperlinkParam As PdfParam = objPdf.CreateParam()

 objHyperlinkParam.Set("Type = link")

 ' Convert URL to image. Enable hyperlinks. Use hemming.

 Dim objImage As PdfImage = objDoc.OpenUrl("http://support.persits.com/default.asp?displayall=1", _

 "AspectRatio=0.7727; hyperlinks=true; hem=50; hemcolor=white")

 ' Iterate through all images

 While Not objImage Is Nothing

 ' Add a new page

 Dim objPage As PdfPage = objDoc.Pages.Add()

 ' Compute scale based on image width and page width

 Dim fScale As Single = objPage.Width / objImage.Width

 ' Draw image

 objParam("x") = 0

 objParam("y") = objPage.Height - objImage.Height * fScale

 objParam("ScaleX") = fScale

 objParam("ScaleY") = fScale

 objPage.Canvas.DrawImage(objImage, objParam)

 ' Now draw hyperlinks from the Image.Hyperlinks collection

 For Each objRect As PdfRect In objImage.Hyperlinks

 objHyperlinkParam("x") = objRect.Left * fScale

 ' Y-coordinate must be lifted by the same amount as the image itself

 objHyperlinkParam("y") = objRect.Bottom * fScale + objParam("y")

 objHyperlinkParam("width") = objRect.Width * fScale

 objHyperlinkParam("height") = objRect.Height * fScale

 objHyperlinkParam("border") = 0

 ' Create link annotation

 Dim objAnnot As PdfAnnot = objPage.Annots.Add("", objHyperlinkParam)

 objAnnot.SetAction(objDoc.CreateAction("type=URI", objRect.Text))

 Next

 ' Go to next image

 objImage = objImage.NextImage

 End While

 ' Save document, the Save method returns generated file name
 Dim strFilename As String = objDoc.Save(Server.MapPath("hyperlinks.pdf"), False)

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_18/18_hyperlinks.cs.aspx
 http://localhost/asppdf.net/manual_18/18_hyperlinks.vb.aspx

 18.4 Miscellaneous Parameters

 18.4.1 Allowed Content

 By default, the OpenUrl method instructs Internet Explorer to only display images and videos when rendering the HTML document.
 The method supports six parameter, all optional, that control the type of content IE is allowed to load. These parameters are:

 	Images (True by default) - instructs IE to load images;
	Video (True by default) - instructs IE to load video;
	DownloadActiveX (False by default) - instructs IE to download ActiveX controls;
	RunActiveX (False by default) - instructs IE to run ActiveX controls;
	Java (False by default) - instructs IE to enable Java applets;
	Scripts (False by default) - instructs IE to enable scripts.

 18.4.2 Threading

 OpenUrl creates a separate thread of execution to communicate with IE. Failure to create a separate
 thread would cause the method to hang when used under ASP.NET (but not under classic ASP.)
 While it is recommended that the separate-thread mode be used under both ASP and ASP.NET,
 there is still a way to enable the single-thread mode by setting the parameter SingleThread
 to True. The single-thread mode of operation can only be used in classic ASP and stand-alone environments but not in ASP.NET.

 18.4.3 Internal Window Dimensions

 OpenUrl creates an internal window to hold the WebBrowser control. The default dimensions of this window is 100x100.
 In most cases, the window is resized automatically to accommodate the HTML document. However,
 if the specified URL is a frameset, the window may retain its original size which is usually not large enough for
 the HTML content to fit. The parameters WindowWidth and WindowHeight enable you to
 specify a window size large enough to accommodate your frameset.

 18.5 IE Compatibility Mode

 In most cases, the IE rendering engine runs under a "compatibility mode" by default.
 Sometimes this causes serious rendering issues -- the output generated by the OpenUrl
 method looks considerably different than what is displayed by a browser.

 To switch the IE rendering engine to the "regular" mode, the following simple change in the registry is needed:

 Under the key

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION

 and, on a 64-bit server, under the key

 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet Explorer\MAIN\FeatureControl\FEATURE_BROWSER_EMULATION

 the following DWORD entry must be added for IIS:

 Name=w3wp.exe, Value=9000 (decimal), as follows:

 IIS has to be reset (iisreset command at the command prompt) for the change to take effect.

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

