

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 6: Text and Fonts

 Contents

 6.1 Overview of Canvas.DrawText method

 6.2 Font Management

 6.3 Hebrew and Arabic Character Handling

 6.4 HTML Support

 6.1 Overview of Canvas.DrawText method

 Text is placed on a canvas via the DrawText method
 which takes three arguments: a Unicode string containing text
 to be printed, a parameter object (or parameter string),
 and a font object. This method returns the number
 of characters successfully printed. This number may be
 less than the length of the original string
 if the whole text did not fit in the space allocated for it.

 6.1.1 Bounding Box Parameters

 Besides the text and font arguments, the DrawText method takes
 quite a few numeric and Boolean parameters passed in via a parameter object
 or parameter string. The only two
 required parameters are X and Y that specify the coordinates of
 the upper-left corner of a bounding box inside which the text string will be displayed,
 as follows:

 The vertical distance between the baseline (bottom of capital letters) of the first
 line of text and the top of the bounding box equals the current font size which is
 10 by default (at first). Font size can be specified via the Size parameter.
 Once font size is explicitly specified, it becomes the default size
 for this font.

 By default, the bounding box extends indefinitely to the right and downwards.
 If the Width parameter is specified,
 the bounding box becomes closed on the right, and the DrawText method will
 perform word wrapping, if necessary. If Width
 is specified, it is also possible to set Alignment
 to right (1) or center (2). By default,
 Alignment is set to left (0). Text justification
 (alignment on both the left and right sides) is also possible, but only via
 HTML (see Section 6.4 below).

 If both the Width and Height parameter are specified,
 the bounding box becomes closed from all sides, and only the portion
 of the text string that fits in the box will be displayed.
 DrawText will then return the number of characters that were successfully displayed.
 If even
 a single line of text cannot fit in the height provided, no text will
 be displayed at all, and DrawText will return 0.

 Example:

 objPage.Canvas.DrawText("Hello World!", "x=10, y=20; width=400; height=200; size=15; alignment=center", objDoc.Fonts["Courier"]);

 6.1.2 Rendering Parameter

 The Rendering parameter (0 by default) determines whether showing text causes
 character outlines to be stroked, filled, used as a clipping
 boundary, or some combination of the three, as follows:

 6.1.3 Other Parameters

 Other DrawText parameters include:

 Color: a standard color constant (such as red or blue)
 or a hex RGB value. This parameter is set to black (&H000000) by default.

 Angle: specifies the angle (in degrees) by which the text
 should be rotated counter-clockwise around the upper-left corner of
 the bounding box. This parameter is set to 0 by default.

 Spacing: This parameter controls the distance between
 individual lines of text. By default, this parameter is 1. Set it to
 a number greater than 1 to widen the distance between lines,
 and to a number between 0 and 1 to narrow it down.

 Tab: This parameter controls how
 wide an indent should be when a tab character is encounterd.
 The indent is measured in space characters.
 This parameter is 10 by default which means the default
 tab indent is as wide as 10 space characters.

 HTML: If set to True, this parameter informs the DrawText
 method that the text string is to be treated as HTML.
 Support for HTML tags is described in detail in Section 6.4 of this chapter.
 False by default.

 ColorSpace, c1, c2, ..., cN: These
 parameters were introduced in version 2.7 to enable colors from color spaces
 other than RGB or CMYK to be specified.
 See Section 16.4 - Using Color Spaces with PdfTable and Other Objects
 for more info.

 The Boolean parameter ReverseHebrewArabic will be described
 in Section 6.3 of this chapter.

 6.1.4 Code Sample: Spanning Multiple Pages

 The following code sample
 displays a user-specified text string on a page, and if it does not fit,
 more pages are added to the document as necessary:

 // create instance of the PDF manager

 PdfManager objPDF = new PdfManager();

 // Create new document

 PdfDocument objDoc = objPDF.CreateDocument();

 // Add a page to document. Pages are intentionally small to demonstrate text spanning

 PdfPage objPage = objDoc.Pages.Add(216, 216);

 // use Times-Roman font

 PdfFont objFont = objDoc.Fonts["Times-Roman"];

 string strText = txtLargeText.Text;

 // Parameters: X, Y of upper-left corner of text box, Height, Width

 PdfParam objParam = objPDF.CreateParam("x=10;y=206;height=196;width=196; size=30;");

 while(strText.Length > 0)

 {

 // DrawText returns the number of characters that fit in the box allocated.

 int nCharsPrinted = objPage.Canvas.DrawText(strText, objParam, objFont);

 // The entire string printed? Exit loop.

 if(nCharsPrinted == strText.Length)

 break;

 // Otherwise print remaining text on next page

 objPage = objPage.NextPage;

 strText = strText.Substring(nCharsPrinted);

 }

 ' Create new document

 Dim objDoc As PdfDocument = objPDF.CreateDocument()

 ' Add a page to document. Pages are intentionally small to demonstrate text spanning

 Dim objPage As PdfPage = objDoc.Pages.Add(216, 216)

 ' use Times-Roman font

 Dim objFont As PdfFont = objDoc.Fonts("Times-Roman")

 Dim strText As String = txtLargeText.Text

 ' Parameters: X, Y of upper-left corner of text box, Height, Width

 Dim objParam As PdfParam = objPDF.CreateParam("x=10;y=206;height=196;width=196; size=30;")

 While strText.Length > 0

 ' DrawText returns the number of characters that fit in the box allocated.

 Dim nCharsPrinted As Integer = objPage.Canvas.DrawText(strText, objParam, objFont)

 ' The entire string printed? Exit loop.

 if nCharsPrinted = strText.Length Then Exit While

 ' Otherwise print remaining text on next page

 objPage = objPage.NextPage

 strText = strText.Substring(nCharsPrinted)

 End While

 The property Page.NextPage returns the page following this one.
 If this is the last page, a new page is created.

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_06/06_text.cs.aspx
 http://localhost/asppdf.net/manual_06/06_text.vb.aspx

 6.2 Font Management

 The third argument to the DrawText method is an instance
 of PdfFont, an object that encapsulates
 a particular font to be used for text rendering. PdfFont objects are obtained via the PdfFonts
 collection returned by PdfDocument's Fonts property.

 A font object can be obtained from the PdfFonts collection
 in two ways: via the default parameterized Item property,
 or via the LoadFromFile method. The Item property
 expects two arguments: a font name, and optionally character set.
 This property only allows you to retrieve fonts that are currently
 installed on the machine and appear in the Fonts control panel,
 and also the 14 built-in PDF fonts (described below).

 LoadFromFile, on the other hand, enables you to load
 TrueType or OpenType fonts from .ttf or .otf files.
 Such font do not have to be installed on the machine.

 6.2.1 The 14 Standard Fonts

 All PDF viewer applications are guaranteed to recognize the following
 14 fonts, known as the standard fonts:

 	Times-Roman
	Times-Bold
	Times-Italic
	Times-BoldItalic
	Helvetica
	Helvetica-Bold
	Helvetica-Oblique
	Helvetica-BoldOblique
	Courier
	Courier-Bold
	Courier-Oblique
	Courier-BoldOblique
	Symbol
	ZapfDingbats

 To obtain such a font, pass the font name (including a dash
 character, if applicable) to the PdfFonts.Item property, and
 omit the 2nd optional argument, for example:

 PdfFont objFont = objDoc.Fonts["Times-Bold"];

 The advantage of using a standard font as opposed to
 an arbitrary TrueType font
 is that the size of your PDF document is reduced because standard fonts
 do not have to be embedded in the document.
 However, the standard fonts are limited to only a few
 simple fonts, and have no support for foreign
 alphabets. To compensate for these limitations,
 AspPDF supports the use of arbitrary TrueType or OpenType
 fonts.

 See Appendix B - Special Font Tables for the
 Symbol and ZapfDingbats glyphs and their respective numeric codes.

 6.2.2 Using TrueType Fonts

 If anything other than a standard font name is passed
 to PdfFonts.Item
 or if the second CharSet argument is set to anything other than 0,
 the PdfFonts object will look for the specified font supporting the specified character set
 among the fonts currently installed on the machine.
 If a font matching these criteria is found, a corresponding PdfFont
 object is returned. Otherwise, an error exception is thrown.

 AspPDF can also open a .ttf or .otf file containing a TrueType
 or OpenType font directly via the method PdfFonts.LoadFromFile
 which expects a full path to the font file, as follows:

 PdfFont objFont = objDoc.Fonts.LoadFromFile(@"c:\windows\fonts\arial.ttf");

 As of Version 2.9.0.1, the LoadFromFile method supports TTC files as well, which are TrueType collections
 containing multiple TrueType fonts. By default, LoadFromFile loads the very first font in the collection.
 To load an arbitrary font, the 1-based font index must be appended to the TTC path, separated by a comma.
 The following line of code loads font #2 from the TrueType font collection gulim.ttc:

 Set Font = Doc.Fonts.LoadFromFile("c:\windows\fonts\gulim.ttc,2")

 A TrueType or OpenType font must contain a Unicode encoding table
 for AspPDF to be able to use it. An attempt to use
 a font that does not have such a table will result in an error exception.
 Most Windows fonts do have it.

 AspPDF always embeds a TrueType font in the PDF document
 it creates. It does so in an optimized manner: only the glyphs
 (character shapes) that are used by the document are embedded,
 not the entire font.

 Under .NET Core on Linux, do not use the PdfFonts[] indexer as it will throw an error exception.
 Always use the objDoc.Fonts.LoadFromFile
 method to explicitly specify the location of the TrueType font file.
 This is because AspPDF.NET does not know where the TrueType fonts are on Linux.

 6.2.3 Copyright Issues

 Just like software, fonts are considered intellectual property
 and are subject to copyright protection and licensing.
 If you are using a non-standard
 font in your PDF document, you must carefully examine
 this font's embedding licensing rights to avoid
 potential legal problems.

 All TrueType fonts contain embedding flags
 that indicate embedding licensing rights for the font. The PdfFont
 object exposes this value via the Embedding property.
 The possible values are:

 	0: Installable embedding allowed.
	2: Restricted license embedding. No embedding allowed.
	
 6: Print & Preview embedding allowed. Font may be embedded in a document but installed
 temporarily on remote system. Documents can only be opened read-only.

	10: Editable embedding only, fonts may be embedded but must only be installed temporarily on remote system.

 The value of 2 prohibits embedding, so we recommend using the following
 check when using an external font:

 PdfFont objFont = objDoc.Fonts.LoadFromFile(@"c:\winnt\fonts\somefont.ttf");

 if(objFont.Embedding == 2)

 {

 Response.Write("Embedding of this font is prohibited.");

 objFont = null;

 }

 Note that AspPDF ignores the embedding flags, so it is the application
 developer's	responsibility to perform the licensing rights check shown above.
 If in doubt, contact the font's vendor.

 6.3 Hebrew and Arabic Character Handling

 AspPDF's font-related functionality includes support for the
 Hebrew and Arabic right-to-left alphabets. It also includes
 the functionality to handle Arabic ligatures.

 6.3.1 Right-to-Left Writing

 The ReverseHebrewArabic parameter of the DrawText method,
 if set to True, reverses the sequence of
 Hebrew and Arabic characters in a text string, while leaving
 other alphabets' characters and punctuation marks in their regular order.
 Setting this parameter to True is usually combined with
 setting the Alignment parameter to right (1) as Hebrew
 and Arabic texts are usually aligned to the right.

 6.3.2 Arabic Ligatures

 When Arabic characters are encountered, AspPDF automatically
 converts individual character codes into "ligatures"
 (contextual joinings of letters), for example:

 6.4 HTML Support

 In order to facilitate text formatting, text strings
 passed to the Canvas.DrawText method may contain certain HTML tags.
 You must let DrawText know that the string
 is to be treated as HTML by setting an additional parameter,
 HTML, to true, e.g.

 objCanvas.DrawText("For more info, click <U>here</U>", "x=10; y=20; html=true", objFont);

 6.4.1 Supported Tags and Syntax

 The following HTML tags are currently supported:

 <CENTER>

 <DIV ALIGN="..." STYLE="...">

 <I>

 <P>

 <SUB>

 <SUP>

 <U>

 <S>

 All other tags are ignored. Each attribute value inside a tag must be enclosed in double-quotes, otherwise the attribute
 will be ignored altogether. All attributes are optional.
 Tags and attributes are case-insensitive.
 The CR (13), LF (10) and Tab (9) characters are treated as spaces.
 Multiple consecutive space characters are treated as a single space.

 The SIZE attribute of a tag must be an integer between 1 and 7
 which corresponds to absolute font size of
 7.5, 10, 12, 13.5, 18, 24 and 36, respectively (in default user units).
 To specify an arbitrary font size, use the STYLE attribute described below.
 By default, font size is set to 10 (or the value of the Size parameter passed to the DrawText method.)

 The FACE attribute of a tag specifies a font name
 to be used to draw text that follows the tag.
 By default, the font object passed to the DrawText method as an argument is used.
 You must always specify a font family, such as "Courier New", instead of a
 specific font name such as "Courier New Bold". To draw text in
 bold, italic, or both, you must use the
 tags and <I>, or style attributes font-weight and font-style (described below).

 For example, the following text string will be displayed using four different fonts,
 Arial, Arial Bold, Arial Bold Italic, and Arial Italic:

 "Happy Birthday <i>To You</i>"

 Output:

 Happy Birthday To You

 Note that to be able to use the and <I> tags, the respective
 font styles must be installed on your system,
 or an error exception will be thrown. AspPDF will
 not attempt to replace a missing font with a similar one.

 The COLOR attribute of a tag specifies font color.
 A color can be specified either by name or a Hex value prefixed by #, e.g.

 By default,
 the color is set to black (#000000) or whatever value specified by the Color parameter passed to DrawText.

 The STYLE attribute of the and <DIV> tags allows you to specify
 various font attributes in a single tag using the Cascading Style Sheet (CSS) syntax.
 The following CSS attributes are currently supported:

 color

 font-family

 font-size (in pt, in, cm or mm)

 font-style (normal or italic)

 font-weight (normal or bold)

 text-decoration (none or underline)

 For example:

 Text alignment to the left, center, right, and both sides is to be specified via a <DIV> tag
 with the ALIGN attribute set to "left", "center", "right", and "justify", respectively.

 In addition to the HTML tags mentioned above, the DrawText method recognizes
 the following special symbols:

 & (&)

 ¢ (¢)

 © (©)

 ° (°)

 € (€)

 ≥ (≥)

 > (>)

 ≤ (≤)

 < (<)

 (non-breakable space)

 ≠ (≠)

 £ (£)

 " (")

 ® (®)

 ™ (™)

 ¥ (¥)

 &#NNN; (an arbitrary character with Unicode code NNN)

 6.4.2 Spanning Multiple Pages

 If a text string does not fit in a single page,
 the DrawText method must be called on the next page and
 passed a remainder of the string, and this has to be repeated as many times
 as necessary.
 The size of the remainder is determined by the return value of DrawText
 (see the code sample in Section 6.1.4.)

 For the most part, this method applies to HTML strings as well, except that
 by cutting off a portion of the string that has already been drawn on a previous
 page we may inadvertently cut off HTML tags that are still in effect. As a result,
 text on subsequent pages may not be displayed correctly.

 To circumvent this problem, the PdfCanvas object provides a read-only HtmlTag
 property which is populated by a call to DrawText if the HTML parameter
 is set to true and
 the specified text string does not fit in the page.
 The property contains an HTML tag representing a set of font
 attributes currently in effect. This tag should simply be prepended to the
 remainder of the text string for the next call to DrawText.

 The following code sample demonstrates this technique:

 ...

 string strText = objPDF.LoadTextFromFile(Server.MapPath("html.txt"));

 // Parameters: X, Y of upper-left corner of text box, Height, Width

 PdfParam objParam = objPDF.CreateParam("x=10; y=290; width=280; height=280; html=true");

 while(strText.Length > 0)

 {

 // DrawText returns the number of characters that fit in the box allocated.

 int nCharsPrinted = objPage.Canvas.DrawText(strText, objParam, objFont);

 // HTML tag generated by DrawText to reflect current font state

 String strHtmlTag = objPage.Canvas.HtmlTag;

 // The entire string printed? Exit loop.

 if(nCharsPrinted == strText.Length)

 break;

 // Otherwise print remaining text on next page

 objPage = objPage.NextPage;

 strText = strHtmlTag + strText.Substring(nCharsPrinted);

 }

 ...

 Dim strText As String = objPDF.LoadTextFromFile(Server.MapPath("html.txt"))

 ' Parameters: X, Y of upper-left corner of text box, Height, Width

 Dim objParam As PdfParam = objPDF.CreateParam("x=10; y=290; width=280; height=280; html=true")

 While strText.Length > 0

 ' DrawText returns the number of characters that fit in the box allocated.

 Dim nCharsPrinted As Integer = objPage.Canvas.DrawText(strText, objParam, objFont)

 ' HTML tag generated by DrawText to reflect current font state

 Dim strHtmlTag As String = objPage.Canvas.HtmlTag

 ' The entire string printed? Exit loop.

 If nCharsPrinted = strText.Length Then Exit While

 ' Otherwise print remaining text on next page

 objPage = objPage.NextPage

 strText = strHtmlTag + strText.Substring(nCharsPrinted)

 End While

 Click the links below to run this code sample:

 http://localhost/asppdf.net/manual_06/06_html.cs.aspx
 http://localhost/asppdf.net/manual_06/06_html.vb.aspx

 6.4.3 Issues and Limitations

 	
 DrawText requires that attribute values in a tag be enclosed in double quotes,
 although most other HTML implementations do not require that.

	An <A> tag cannot span multiple pages.

	
 An <A> tag can only be used on a PdfCanvas object associated with a page.
 It cannot be used on a PdfCanvas object associated with a graphics or table cell.
 This limitation is due to the fact that HTML anchors (links) in PDF are implemented
 via annotations, and an annotation can only be associated with a page.

	
 When the HTML parameter is set to True, the ReverseHebrewArabic
 and Angle parameters are ignored.

 AspPDF.NET provides a much more extensive HTML support
 via the ImportFromUrl method. For more information, see
 Chapter 15 - HTML to PDF Conversion.

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

