

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 15: HTML to PDF Conversion

 Contents

 15.1 ImportFromUrl Method

 15.2 Authentication

 15.3 Error Log

 15.4 Page Breaks

 15.5 Direct HTML Feed

 15.6 CSS Media Selection

 15.7 Obtaining X- and Y-Boundaries

 15.8 Templates

 15.9 Support for Chinese/Japanese/Korean (CJK) Fonts

 15.1 ImportFromUrl Method

 AspPDF.NET is capable of converting HTML documents to PDF
 via PdfDocument's ImportFromUrl method.
 This method opens an HTML document from a given URL, splits it into pages and renders it
 onto an empty or existing PDF document. The document can then be further edited, if necessary,
 and saved to disk, memory or an HTTP stream as usual.

 ImportFromUrl's support for various HTML tags and constructs is not quite as extensive
 as that of major browsers, but still considerably stronger than the limited
 HTML functionality of Canvas.DrawText
 available in older version of AspPDF.NET. ImportFromUrl recognizes tables, images, lists, cascading style sheets, etc.

 ImportFromUrl accepts four parameters, all but the first one optional: the input URL, a parameter
 list, and a username/password pair.

 The URL parameter can be an HTTP or HTTPS address, such as
 http://www.server.com/path/file.html, or a local physical path such as c:\path\file.html.
 Note that if you want to open a dynamically generated document such as an .asp or aspx file,
 you need to invoke it via HTTP even if this file is local to your own script.

 You can also specify an HTML string directly via the URL
 parameter. This is described in Section 15.5 of this chapter.

 The following simple code snippet creates a PDF document out of the Persits Software site persits.com:

 PdfManager objPdf = new PdfManager();

 PdfDocument objDoc = objPdf.CreateDocument();

 objDoc.ImportFromUrl("http://www.persits.com/old/index.html", "scale=0.6; hyperlinks=true; drawbackground=true");

 string strFilename = objDoc.Save(Server.MapPath("importfromurl.pdf"), false);

 Dim objPdf As PdfManager = new PdfManager()

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 objDoc.ImportFromUrl("http://www.persits.com/old/index.html", "scale=0.6; hyperlinks=true; drawbackground=true")

 Dim strFilename As string = objDoc.Save(Server.MapPath("importfromurl.pdf"), false)

 Click on the links below to run this code sample:

 http://localhost/asppdf.net/manual_15/15_importfromurl.cs.aspx
 http://localhost/asppdf.net/manual_15/15_importfromurl.vb.aspx

 The ImportFromUrl method's 2nd argument is a PdfParam object or parameter string
 specifying additional parameters controlling the HTML to PDF conversion process.
 For example, to create a document in a landscape orientation, the Landscape
 parameter must be set to true, for example:

 objDoc.ImportFromUrl("http://www.persits.com", "landscape=true");

 When new pages have to be added to the document during the conversion process,
 the default page size is U.S. Letter. This can be changed via the
 PageWidth and PageHeight parameters.

 When rendering HTML content on a page, AspPDF.NET leaves 0.75" margins around the content area.
 That can be changed via the LeftMargin, RightMargin, TopMargin and BottomMargin
 parameters.

 The full list of ImportFromUrl parameters can be found here.

 Under .NET Core on Linux, you must explicitly load all TrueType fonts used by your HTML document
 (including their bold, italic, and bold/italic versions)
 via the method objDoc.Fonts.LoadFromFile before calling ImportFromUrl. This is because AspPDF.NET does not know
 where to find TrueType fonts on Linux. You must load at least one font, Times New Roman, as it is the default font.
 For example:

 PdfFont objFont1 = objDoc.Fonts.LoadFromFile("fonts/times.ttf");

 PdfFont objFont2 = objDoc.Fonts.LoadFromFile("fonts/timesbd.ttf");

 PdfFont objFont3 = objDoc.Fonts.LoadFromFile("fonts/timesi.ttf");

 PdfFont objFont4 = objDoc.Fonts.LoadFromFile("fonts/timesbi.ttf");

 ...

 objDoc.ImportFromUrl(...);

 IMPORTANT: Avoid calling ImportFromUrl on a URL located in the same virtual directory as the script
 that makes the call to ImportFromUrl. According to Microsoft KB article
 Q316451,
 "this can result in poor performance due to thread starvation," and may produce
 the error exception "MSXML2::ServerXMLHTTP Error: The request has timed out."

 15.2 Authentication

 15.2.1 Basic Authentication

 The 3rd and 4th arguments of the ImportFromUrl method are a username and password
 that can be used if the URL being opened is protected via Basic Authentication, as follows:

 objDoc.ImportFromUrl("http://www.server.com/script.asp", "landscape=true", "jsmith", "pwd");

 15.2.2 .NET Forms Authentication

 Under .NET, the Username and Password arguments can instead be used to pass an authentication cookie
 in case both the script calling ImportFromUrl and a file being converted to PDF
 are protected by the same user account under .NET Forms authentication.
 To pass a cookie to ImportFromUrl, the cookie name prepended with the prefix "Cookie:" is passed
 via the Username argument, and the cookie value via the Password argument.
 The following example illustrates this technique.

 Suppose you need to implement a "Click here for a PDF version of this page" feature
 in a .NET-based web application. The application is protected with .NET Forms Authentication:

 <authentication mode="Forms">

 <forms name="MyAuthForm" loginUrl="login.aspx" protection="All">

 <credentials passwordFormat = "SHA1">

 <user name="JSmith" password="13A23E365BFDBA30F788956BC2B8083ADB746CA3"/>

 ... other users

 </credentials>

 </forms>

 </authentication>

 The page that needs to be converted to PDF, say report.aspx, contains the button
 "Download PDF version of this report" that invokes another script, say convert.aspx, which
 calls AspPDF.NET's ImportFromUrl. Both scripts reside in the same directory under the same protection.

 If convert.aspx simply calls objDoc.ImportFromUrl("http://localhost/dir/report.aspx", ...),
 the page that ends up being converted will be login.aspx and not report.aspx, because
 AspPDF.NET itself has not been authenticated against the user database and naturally will be forwarded
 to the login screen.

 To solve this problem, we just need to pass the authentication cookie whose name is MyAuthForm
 (the same as the form name) to ImportFromUrl. The following code (placed in convert.aspx) does the job:

 void Page_Load(object sender, System.EventArgs e)

 {

 PdfManager objPDF = new PdfManager();

 string strCookieName = "", strCookieValue = "";

 ' Search for our authentication cookie

 for(int i = 0; i < Request.Cookies.Count; i++)

 {

 if(Request.Cookies[i].Name == "MyAuthForm")

 {

 strCookieName = Request.Cookies[i].Name;

 strCookieValue = Request.Cookies[i].Value;

 break;

 }

 }

 PdfDocument objDoc = objPDF.CreateDocument();

 objDoc.ImportFromUrl("http://localhost/dir/report.aspx", null,

 "Cookie:" + strCookieName, strCookieValue);

 objDoc.SaveHttp("attachment;filename=report.pdf");

 }

 Sub Page_Load(Sender As Object, E As System.EventArgs)

 Dim objPDF As PdfManager = new PdfManager()

 Dim strCookieName As String = "", strCookieValue = ""

 ' Search for our authentication cookie

 For i As Integer = 0 to Request.Cookies.Count - 1

 If Request.Cookies(i).Name = "MyAuthForm" Then

 strCookieName = Request.Cookies(i).Name

 strCookieValue = Request.Cookies(i).Value

 Exit For

 End If

 Next

 Dim objDoc As PdfDocument = objPDF.CreateDocument()

 objDoc.ImportFromUrl("http://localhost/dir/report.aspx", Nothing, _

 "Cookie:" + strCookieName, strCookieValue)

 objDoc.SaveHttp("attachment;filename=report.pdf")

 End Sub

 Note that the cookie name is prepended with the prefix "Cookie:" before being passed to ImportFromUrl.

 15.3 Error Log

 ImportFromUrl throws an exception if the specified URL cannot be found or invalid, and no HTML to PDF conversion
 takes place. However, if the main URL is valid but some of the dependent information (fonts, image URLs, CSS files, etc.) cannot be
 found, the conversion will go on uninterrupted, although the resultant PDF document may not look as expected.

 To simplify debugging, ImportFromUrl can be used in a debug mode.
 If the parameter Debug=true is used, ImportFromUrl returns a log of non-fatal errors encountered
 during the conversion process. A log entry consists of the entry type, such as "Image", "CSS", etc.,
 error message, and relevant data, such as the invalid URL, unknown font name, etc.
 Log entries are separated by two pairs of CR/LF characters.

 The following code snippet invokes ImportFromUrl in the debug mode and displays the error log:

 string strLog = objDoc.ImportFromUrl("http://www.server.com/script.asp", "debug=true");

 Response.Write(strLog);

 A typical log string may look as follows:

 Image: Error opening URL. HTTP Status Code: 404

 Data: http://www.persits.com/image.gif

 Font: Font name cannot be found.

 Data: Arrial

 15.4 Page Breaks

 HTML allows page breaks for printing purposes via the CSS properties page-break-before
 and page-break-after. The ImportFromUrl method recognizes these properties for the purpose of page breaking
 in a limited set of HTML tags. The value for these two properties must be set to "always", other values
 will have no effect. Just like with any CSS property, inline syntax or a separate style sheet can be used.
 For example:

 <BR style="page-break-before: always">

 The property page-break-before: always can be applied to the following tags:

 <HR>

 <TABLE>

 <DIV>

 The property page-break-after: always can be applied to the following tags:

 <HR>

 15.5 Direct HTML Feed

 Starting with Service Release 1.6.0.8, the ImportFromUrl method allows you to specify
 an HTML string directly via the first parameter (URL).
 The string must contain the sub-string <HTML
 or <html to be recognized as a direct HTML feed and not a URL. For example:

 string str = "<HTML><TABLE><TR><TD>Text1</TD><TD>Text2</TD></TR></TABLE></HTML>";

 objDoc.ImportFromUrl(str);

 If an HTML string is to include references to images, or other external objects, you must use fully qualified URLs
 for these objects. Fractional URLs will not be recognized since there is no "base" URL to be applied here:

 string str = "<HTML></HTML>";

 ' Correct

 string str = "<HTML></HTML>";

 ' Incorrect

 string str = "<HTML></HTML>";

 15.6 CSS Media Selection

 The ImportFromUrl method can be configured to choose which cascading style sheets
 to read and which to ignore depending on the MEDIA attribute of the
 <STYLE> and <LINK> tags.

 ImportFromUrl recognizes the following values for the MEDIA attribute:

 "ALL"
"SCREEN"
"PRINT"
"ASPPDF"

 The first three are part of the CSS specs, and the last one is a special value which enables
 you to create a style sheet specifically for AspPDF.NET.

 Using the Media parameter, you can specify a combination (sum) of the following values:

 Value
Meaning

 1
MEDIA="ALL" (or no MEDIA attribute)

 2
MEDIA="SCREEN"

 4
MEDIA="PRINT"

 8
MEDIA="ASPPDF"

 128
MEDIA="<all others>"

 For example, the following call makes ImportFromUrl read only the style sheets with the
 MEDIA attribute set to "ALL" and "ASPPDF" (and also
 those without a MEDIA attribute):

 objDoc.ImportFromUrl("http://www.someurl.com", "media=9");

 By default, the Media parameter is set to 255 which means ImportFromUrl ignores
 the MEDIA attribute altogether and loads all the style sheets it encounters.

 15.7 Obtaining X- and Y-Boundaries

 As of Version 1.9, you can retrieve the (estimated) Y-coordinate of the lowest boundary
 of the HTML content rendered by the last successful call to ImportFromUrl, and also the index
 of the page within the document where the rendering ends.

 This information is obtained via a new PdfDocument property, ImportInfo,
 which returns an instance of the PdfParam object populated with two items, "Y" and "Page",
 which correspond to the Y-coordinate and page index, respectively.

 The following snippet performs some HTML-to-PDF conversion and then draws
 a horizontal line right underneath the HTML content on the page where the rendering ends:

 objDoc.ImportFromUrl("http://www.server.com/script.asp");

 PdfParam objParam = objDoc.ImportInfo;

 int nIndex = objParam["Page"];

 float fY = objParam["Y"];

 PdfPage objPage = objDoc.Pages[nIndex];

 objPage.Canvas.DrawLine(0, fY, objPage.Width, fY);

 As of Version 3.4.0.33257, the PdfParam object returned by ImportInfo also contains
 an estimated right-most boundary of the content stored in the "X" item. It can be retrieved
 the same way as the Y item:

 ...

 float fX = objParam["X"];

 15.8 Templates

 As of Version 3.2, a PdfDocument object may be assigned one or more PdfGraphics objects to be used as templates
 automatically every time a new page is added to the document. This feature should be used in conjunction with the ImportFromUrl
 method when HTML rendering needs to be performed on top of templates as opposed to blank pages.

 One or more PdfGraphics objects can be designated as templates for a particular PdfDocument object
 by calling the method PdfDocument.AddTemplate. This method takes two arguments: an instance of the PdfGraphics object
 to be used as a template, and an optional list of parameters specifying which pages (by index) this template should be applied to,
 as well as the template's position and scaling on the pages.

 The From and To parameters specify a 1-based range of page indices that this template is applicable to.
 By default, From is 1 and To is infinity. To specify multiple ranges, the pairs From1/To1,
 From2/To2, etc. should be used.
 Odd and even pages can be excluded from the selected ranges if the parameter Exclude is set to 1 and 2, respectively.
 If this parameter is set to any other number or omitted, no pages are excluded.

 The location and scaling of the graphics template on the page are controlled by the optional parameters X, Y,
 ScaleX, ScaleY and Angle. X and Y are 0 by default, which corresponds
 to the lower-left corner of the page. In case the page is in landscape orientation,
 Angle should be set to 90 and X to the page width to properly position and orient the template.

 A template is usually applied to multiple pages, and multiple templates can apply to the same page. Note that only newly added pages
 are subject to templating, but not existing pages.
 To cancel templating, the method PdfDocument.ClearTemplates should be called.

 The following code snippet uses pages from existing PDF documents as templates for a new document imported from HTML.
 Page 1 of the new document uses head.pdf as the template, all subsequent even pages use even.pdf, and all subsequent odd pages use odd.pdf.
 Converting PDF pages to PdfGraphics objects is covered in Section 9.6 - Drawing Other Documents' Pages.

 PdfManager objPdf = new PdfManager();

 // Create new document

 PdfDocument objDoc = objPdf.CreateDocument();

 // Convert pages of existing PDFs to template graphics objects

 // page 1 of Doc1

 PdfDocument objDoc1 = objPdf.OpenDocument(@"c:\path\head.pdf");

 PdfGraphics objTemplate1 = objDoc.CreateGraphicsFromPage(objDoc1, 1);

 // page 1 of Doc2

 PdfDocument objDoc2 = objPdf.OpenDocument(@"c:\path\even.pdf");

 PdfGraphics objTemplate2 = objDoc.CreateGraphicsFromPage(objDoc2, 1);

 // page 1 of Doc3

 PdfDocument objDoc3 = objPdf.OpenDocument(@"c:\path\odd.pdf");

 PdfGraphics objTemplate3 = objDoc.CreateGraphicsFromPage(objDoc3, 1);

 // Set templates

 objDoc.AddTemplate(objTemplate1, "From=1; To=1"); // affect page 1 only

 objDoc.AddTemplate(objTemplate2, "From=2; Exclude=1"); // exclude odd pages

 objDoc.AddTemplate(objTemplate3, "From=2; Exclude=2"); // exclude even pages

 objDoc.ImportFromUrl("http://support.persits.com/default.asp?displayall=1");

 objDoc.Save(@"c:\path\fromhtml.pdf", false);

 In case the document needs to be in landscape orientation, the code above should be modified as follows:

 ...

 objDoc.AddTemplate(objTemplate1, "From=1; To=1; Angle=90; x=612");

 ...

 objDoc.ImportFromUrl("http://support.persits.com/default.asp?displayall=1", "landscape=true");

 ...

 15.9 Support for Chinese/Japanese/Korean (CJK) Fonts

 ImportFromUrl has always supported Chinese/Japanese/Korean (CJK) fonts but, unlike major browsers, required
 that a CJK font be explicitly specified via an HTML tag or CSS property. Otherwise,
 CJK characters would come out as blank squares, as on the picture below (left).

 As of Version 3.4.0.3, the ImportFromUrl method is capable of automatically
 detecting CJK characters and displaying them using a CJK font if the current font specified by the HTML document
 does not support CJK glyphs. To take advantage of this feature, a CJK font has to be opened via the Doc.Fonts(...) collection or Doc.Fonts.LoadFromFile method
 prior to calling ImportFromUrl,
 and the new parameter CJK must be set to True when calling ImportFromUrl, as follows:

 ...

 PdfFont objFont = objDoc.Fonts["SimHei"];

 or

 PdfFont objFont = objDoc.Fonts.LoadFromFile(@"c:\path\simhei.ttf");

 followed by

 objDoc.ImportFromUrl(url, "CJK=true; <other parameters>");

 ...

 The result is shown on the picture above (right).
 The CJK font opened prior to calling ImportFromUrl (SimHei in the example above) is the one applied to all the CJK characters
 that do not have their own CJK font assigned to them by the underlying HTML/CSS.

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

