

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 5: Image and Graphics Objects

 Contents

 5.1 PdfImage Object

 5.2 Masking and Transparency

 5.3 PdfGraphics Object

 5.1 PdfImage Object

 AspPDF.NET is capable of placing arbitrary images on a PDF document.
 It supports images in BMP, GIF, JPEG, PNG and TIFF formats. To display an image
 on a canvas, the method PdfCanvas.DrawImage should be used. This method
 expects two arguments, an instance of the PdfImage object
 and a parameter object (or parameter string).

 A PdfImage object is created via PdfDocument's
 OpenImage method which takes an image path as an argument.
 PdfImage can also be created via the OpenImageBinary
 method which opens an image from memory. Once
 an instance of PdfImage is created, it can be displayed
 multiple times across a PDF document.

 The following code segment displays the image painting.jpg three times on a page
 with various scaling factors:

 void Page_Load(Object Source, EventArgs E)

 {

 PdfManager objPdf = new PdfManager();

 // Create empty document

 PdfDocument objDoc = objPdf.CreateDocument();

 // Add a new page

 PdfPage objPage = objDoc.Pages.Add();

 // Open image

 PdfImage objImage = objDoc.OpenImage(Server.MapPath("painting.jpg"));

 // Create empty param object

 PdfParam objParam = objPdf.CreateParam();

 for(int i = 1; i
 {

 objParam["x"] = (objPage.Width - objImage.Width / i) / 2.0f;

 objParam["y"] = objPage.Height - objImage.Height * i / 2.0f - 200;

 objParam["ScaleX"] = 1.0f / i;

 objParam["ScaleY"] = 1.0f / i;

 objPage.Canvas.DrawImage(objImage, objParam);

 }

 // Save document, the Save method returns generated file name

 string strFilename = objDoc.Save(Server.MapPath("image.pdf"), false);

 lblResult.Text = "Success! Download your PDF file here";

 }

 Sub Page_Load(Source As Object, E As EventArgs)

 Dim objPdf As PdfManager = New PdfManager()

 ' Create empty document

 Dim objDoc As PdfDocument = objPdf.CreateDocument()

 ' Add a new page

 Dim objPage As PdfPage = objDoc.Pages.Add()

 ' Open image

 Dim objImage As PdfImage = objDoc.OpenImage(Server.MapPath("painting.jpg"))

 ' Create empty param object

 Dim objParam As PdfParam = objPdf.CreateParam()

 For i As integer = 1 To 3

 objParam("x") = (objPage.Width - objImage.Width / i) / 2.0f

 objParam("y") = objPage.Height - objImage.Height * i / 2.0f - 200

 objParam("ScaleX") = 1.0f / i

 objParam("ScaleY") = 1.0f / i

 objPage.Canvas.DrawImage(objImage, objParam)

 Next

 ' Save document, the Save method returns generated file name

 Dim strFilename As String = objDoc.Save(Server.MapPath("image.pdf"), false)

 lblResult.Text = "Success! Download your PDF file here"

 End Sub

 Here, we pass four arguments to the DrawImage method: X, Y, ScaleX and ScaleY.
 X and Y are required: they specify the coordinates of the lower-left corner of the image being displayed.

 ScaleX and ScaleY are optional: they specify scaling factors along the X and Y coordinates.
 Both arguments are 1 by default, which means the image size on the page (in user coordinates)
 will be equal to its pixel size, provided that the image resolution is
 the standard 72 dots per inch (dpi).
 For example, if a 72dpi image is 360 x 216 pixels and
 the ScaleX/ScaleY arguments are not specified, the image will occupy
 360 x 216 units of space, or 5" x 3". A 300dpi image with the same
 pixel size will only occupy 1.2" x .72".

 You can optionally specify a rotation Angle (in degrees) by which the image will
 be rotated counter-clockwise around its lower-left corner.

 Click on the links below to run this code sample:

 http://localhost/asppdf.net/manual_05/05_image.cs.aspx
 http://localhost/asppdf.net/manual_05/05_image.vb.aspx

 The overloaded OpenImage(byte[]) method
 opens an image from a memory array
 as opposed to disk. This method can be used if the image being opened
 is stored in a database table as a blob:

 PdfImage objImage = objDoc.OpenImage(rs["image_blob"]);

 5.2.1 Image-to-PDF Conversion

 The PdfImage properties ResolutionX and ResolutionY
 enable conversion of GIF, JPEG, BMP, PNG and TIFF images
 to one-page PDF documents with the size and
 resolution of the original image fully preserved. These properties
 return the dot-per-inch (DPI) resolutions of an image along
 the X and Y coordinates. For GIF, PNG and BMP images, these values are
 always 72 dpi, the resolution of JPEG and TIFF images may vary
 and usually ranges from 72 to 600 dpi.

 The following code fragment converts an arbitrary image
 into a one-page PDF document with the page size
 calculated based on the size and resolution of the image being converted:

 ...

 // Open image from file

 PdfImage objImage = objDoc.OpenImage(Server.MapPath("atlanticocean.tif"));

 // Add empty page. Page size is based on resolution and size of image

 float fWidth = objImage.Width * 72.0f / objImage.ResolutionX;

 float fHeight = objImage.Height * 72.0f / objImage.ResolutionY;

 PdfPage objPage = objDoc.Pages.Add(fWidth, fHeight);

 // Draw image

 objPage.Canvas.DrawImage(objImage, "x=0, y=0");

 ...

 ...

 ' Open image from file

 Dim objImage As PdfImage = objDoc.OpenImage(Server.MapPath("atlanticocean.tif"))

 ' Add empty page. Page size is based on resolution and size of image

 Dim fWidth As Single = objImage.Width * 72.0f / objImage.ResolutionX

 Dim fHeight As Single = objImage.Height * 72.0f / objImage.ResolutionY

 Dim objPage As PdfPage = objDoc.Pages.Add(fWidth, fHeight)

 ' Draw image

 objPage.Canvas.DrawImage(objImage, "x=0, y=0")

 ...

 http://localhost/asppdf.net/manual_05/05_convert.cs.aspx
 http://localhost/asppdf.net/manual_05/05_convert.vb.aspx

 5.2 Masking and Transparency

 Usually, an image completely covers an area it occupies. All portions
 of the image, whether black, white, gray or color, completely obscure
 any marks that may previously have existed in the same place on the page.

 However, it is possible to crop, or "mask out" the background
 of an image and then place the masked image on a different background,
 allowing the existing background to show through the masked areas. Two masking methods
 are available: explicit masking using a separate image, and color key masking.

 5.2.1 Explicit Masking

 This method requires a separate monochrome image which serves as an image
 mask. Such an image can be created using the Microsoft Paint application (included in all versions
 of Windows). Copy an image you need masked into Paint,
 change its attribute to Black and White, then save it as a monochrome
 bitmap. White areas of the bitmap will mask out the corresponding pixels
 of the image being masked.

 An image is masked as follows:

 1. The monochrome mask image is opened with OpenImage, then its
 IsMask property is set to True.

 2. The image to be masked is opened with OpenImage also, then
 its SetImageMask method is called and the image object obtained in Step 1 is passed
 as an argument.

 The following code sample takes the image exclam.gif
 and its monochrome bitmap mask exclam.bmp, and places the image on top of a drawing to demonstrate
 that the existing background is showing through the masked areas.

 ...

 // Open image to become the mask. This has to be a monochrome bitmap

 PdfImage objImageMask = objDoc.OpenImage(Server.MapPath("exclam.bmp"));

 objImageMask.IsMask = true;	// Mark this image object as a mask

 // Open image to be masked

 PdfImage objImage = objDoc.OpenImage(Server.MapPath("exclam.gif"));

 objImage.SetImageMask(objImageMask);

 // Draw masked image

 objPage.Canvas.DrawImage(objImage, "x=10, y=550");

 ...

 ...

 ' Open image to become the mask. This has to be a monochrome bitmap

 Dim objImageMask As PdfImage = objDoc.OpenImage(Server.MapPath("exclam.bmp"))

 objImageMask.IsMask = True	' Mark this image object as a mask

 ' Open image to be masked

 Dim objImage As PdfImage = objDoc.OpenImage(Server.MapPath("exclam.gif"))

 objImage.SetImageMask(objImageMask)

 ' Draw masked image

 objPage.Canvas.DrawImage(objImage, "x=10, y=550")

 ...

 Click on the links below to run this code sample:

 http://localhost/asppdf.net/manual_05/05_mask.cs.aspx
 http://localhost/asppdf.net/manual_05/05_mask.vb.aspx

 5.2.2 Color Key Masking

 An alternative way to mask an image is by specifying
 a range of colors to mask. All samples (a PDF term roughly equivalent to "pixels")
 of the image with color
 components falling within the specified range are masked (not painted).

 A color range is an array of 2 x N integers where N is the number
 of color components per sample. N is 3 for RGB images, 4 for CMYK images,
 and 1 for monochrome bitmaps.

 Each integer in the array must be between 0 and 2 BitsPerComponent - 1.
 The BitsPerComponent value may be 1, 2, 4, or 8 depending on the image. Use
 PdfImage properties ComponentsPerSample and BitsPerComponent
 to know exactly what these values are for your image.

 To specify a color key mask, the PdfImage provides the method SetColorMask
 which takes a parameter object (or parameter string) as an argument.
 The parameters in the parameter object must be named Min1, Max1,
 Min2, Max2, ..., MinN, MaxN.

 For example, the image exclam.gif
 used in the previous section is a GIF, so its ComponentsPerSample is 3
 and BitsPerComponent is 8. To set a mask, we need to
 specify three ranges, or 6 integers each between 0 and 255.
 Therefore, to mask the white and light gray areas of
 this image, we may use the following code:

 objImage.SetColorMask("Min1=250;Max1=255; Min2=250;Max2=255; Min3=250;Max3=255");

 Here, we specify three ranges for each of the R, G, and B color components. The
 ranges are between 250 and 255 which corresponds to white and very light gray.

 5.2.3 GIF & PNG Transparency Support

 AspPDF.NET provides full transparency support for GIF and PNG images. The transparent areas of GIF and
 PNG images are automatically masked. PNG alpha channels are also supported.

 5.2.4 TIFF Transparency Support

 As of Version 3.4.0.33278, AspPDF.NET supports alpha information contained in TIFF images the same way as with PNG images.

 5.3 PdfGraphics Object

 Sometimes, a composite graphics object comprised
 of drawings, text and images, such as a company's logo and slogan on a
 background, needs to be displayed in multiple places and on multiple pages within a PDF
 document, possibly with various scaling factors.

 PDF specifications describe such self-contained, complex entities under the name Form XObjects
 but to avoid confusion with interactive forms described in Chapter 11,
 AspPDF.NET refers to them as graphics objects.

 5.3.1 PdfGraphics Object Overview

 AspPDF.NET provides support for graphics entities via the PdfGraphics
 object creatable via PdfDocument's CreateGraphics method.
 A graphics object has a fixed size specified at creation time, but
 it can be scaled and rotated when displayed via the Cavas.DrawGraphics
 method, the same way as an image.

 PdfGraphics has an associated PdfCanvas object
 accessible via the Canvas property much the same way as PdfPage.
 Therefore, a graphics object may contain drawings,
 images, text and other graphics objects.

 PdfGraphics objects may be
 used stand-alone to help display repetitive graphics entities. They can also
 be used to define the appearance of annotations and form fields
 described in later chapters.

 The code sample below creates an instance of PdfGraphics,
 draws a mathematically defined shape on it, and also draws a string of text.
 After that, the graphics is drawn on the page multiple times with rotation around
 the center of the page.

 ...

 // Create a new Graphics object

 PdfGraphics objGraphics = objDoc.CreateGraphics("Left=0, Bottom = 0; Right=100; Top=100");

 // Create a drawing

 objGraphics.Canvas.DrawRect(1, 1, 99, 99);

 objGraphics.Canvas.MoveTo(50, 90);

 for(int i = 0; i
 {

 objGraphics.Canvas.LineTo((float)(40 * Math.Sin(i / 25.0) + 50),

 (float)(40 * Math.Cos(i / 20.0) + 50));

 }

 objGraphics.Canvas.Fill();

 objGraphics.Canvas.DrawText("AspPDF.NET Rules!", "x=10, y=12; size=8", objDoc.Fonts["Courier"]);

 // Create empty Param object

 PdfParam objParam = objPdf.CreateParam();

 // Display graphics with rotation

 for(int angle = 0; angle
 {

 objParam["x"] = (float)(306 + 150.0 * Math.Cos(angle / 360.0 * 6.28));

 objParam["y"] = (float)(396 + 150.0 * Math.Sin(angle / 360.0 * 6.28));

 objParam["Angle"] = angle;

 objPage.Canvas.DrawGraphics(objGraphics, objParam);

 }

 ...

 ...

 ' Create a new Graphics object

 Dim objGraphics As PdfGraphics = objDoc.CreateGraphics("Left=0, Bottom = 0; Right=100; Top=100")

 ' Create a drawing

 objGraphics.Canvas.DrawRect(1, 1, 99, 99)

 objGraphics.Canvas.MoveTo(50, 90)

 For i As Integer = 0 To 628

 objGraphics.Canvas.LineTo(40 * Math.Sin(i / 25.0) + 50, 40 * Math.Cos(i / 20.0) + 50)

 Next

 objGraphics.Canvas.Fill()

 objGraphics.Canvas.DrawText("AspPDF.NET Rules!", "x=10, y=12; size=8", objDoc.Fonts("Courier"))

 ' Create empty Param object

 Dim objParam As PdfParam = objPdf.CreateParam()

 ' Display graphics with rotation

 For angle As Integer = 0 To 330 Step 30

 objParam("x") = 306 + 150.0 * Math.Cos(angle / 360.0 * 6.28)

 objParam("y") = 396 + 150.0 * Math.Sin(angle / 360.0 * 6.28)

 objParam("Angle") = angle

 objPage.Canvas.DrawGraphics(objGraphics, objParam)

 Next

 ...

 Click on the links below to run this code sample:

 http://localhost/asppdf.net/manual_05/05_graphics.cs.aspx
 http://localhost/asppdf.net/manual_05/05_graphics.vb.aspx

 5.3.2 Tiling Patterns

 Update: As of Version 3.5, there is a more versatile way to create patterns, via the PdfDocument.CreatePattern
 method. This functionality is described in Section 16.5 - Patterns and Shadings.

 A tiling pattern consists of a small graphical figure called a pattern cell. Filling an area with the pattern
 replicates the cell vertically and horizontally within this area.

 AspPDF.NET supports tiling patterns via the method PdfCanvas.FillWithPattern
 which expects an instance of the PdfGraphics object representing the pattern cell to be used.
 The 2nd optional argument, EvenOdd, is the same as in the PdfCanvas.Fill method.
 To designate an instance of the PdfGraphics object as a pattern cell, the CreateGraphics method
 must be called with the parameter Pattern=true.

 The following code snippet fills a circular area with a pattern consisting of a single small image:

 PdfImage objImage = objDoc.OpenImage(@"c:\path\airplane_icon.gif");

 PdfGraphics objGraph = pbjDoc.CreateGraphics("left=0; bottom=0; right=42;top=45; pattern=true;");

 objGraph.Canvas.DrawImage(objImage, "x=0, y=0");

 // Create path, fill it with the pattern

 objPage.Canvas.AddEllipse(300, 200, 100, 100);

 objPage.Canvas.FillWithPattern(objGraph);

 ...

 5.3.3 Creating Graphics from Pages

 As of Version 2.3, a PdfGraphics object can be created from the page of another existing
 document and then drawn on this document one or more times with shifting,
 scaling and rotation applied, if necessary. This functionality
 is provided via the method PdfDocument.CreateGraphicsFromPage
 and described in detail in Section 9.6 - Drawing Other Documents' Pages.

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

